
Convert, Edit, and Compose Images

Im
ag

e Magick

ii

ImageMagick User’s Guide Version 6.0.0

John Cristy
Bob Friesenhahn
Glenn Randers-Pehrson

ImageMagick Studio LLC
http://www.imagemagick.org

Copyright

ImageMagick is distributed under the following license:

Copyright 1999-2004 ImageMagick Studio LLC, a non-profit organization ded-
icated to making software imaging solutions freely available.

1. Definitions.
”License” shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.
”Licensor” shall mean the copyright owner or entity authorized by the copy-
right owner that is granting the License.
”Legal Entity” shall mean the union of the acting entity and all other entities
that control, are controlled by, or are under common control with that entity.
For the purposes of this definition, ”control” means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by
contract or otherwise, or (ii) ownership of fifty percent (50or (iii) beneficial
ownership of such entity.
”You” (or ”Your”) shall mean an individual or Legal Entity exercising per-
missions granted by this License.
”Source” form shall mean the preferred form for making modifications, in-
cluding but not limited to software source code, documentation source, and
configuration files.
”Object” form shall mean any form resulting from mechanical transfor-
mation or translation of a Source form, including but not limited to com-
piled object code, generated documentation, and conversions to other media
types.
”Work” shall mean the work of authorship, whether in Source or Object
form, made available under the License, as indicated by a copyright notice
that is included in or attached to the work (an example is provided in the
Appendix below).
”Derivative Works” shall mean any work, whether in Source or Object form,
that is based on (or derived from) the Work and for which the editorial
revisions, annotations, elaborations, or other modifications represent, as a
whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or
merely link (or bind by name) to the interfaces of, the Work and Derivative
Works thereof.
”Contribution” shall mean any work of authorship, including the original
version of the Work and any modifications or additions to that Work or

v

vi Copyright

Derivative Works thereof, that is intentionally submitted to Licensor for in-
clusion in the Work by the copyright owner or by an individual or Legal
Entity authorized to submit on behalf of the copyright owner. For the pur-
poses of this definition, ”submitted” means any form of electronic, verbal, or
written communication sent to the Licensor or its representatives, including
but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on be-
half of, the Licensor for the purpose of discussing and improving the Work,
but excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as ”Not a Contribution.”
”Contributor” shall mean Licensor and any individual or Legal Entity on
behalf of whom a Contribution has been received by Licensor and subse-
quently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this Li-
cense, each Contributor hereby grants to You a perpetual, worldwide, non-
exclusive, no-charge, royalty-free, irrevocable copyright license to repro-
duce, prepare Derivative Works of, publicly display, publicly perform, sub-
license, and distribute the Work and such Derivative Works in Source or
Object form.

3. Grant of Patent License. Subject to the terms and conditions of this Li-
cense, each Contributor hereby grants to You a perpetual, worldwide, non-
exclusive, no-charge, royalty-free, irrevocable (except as stated in this sec-
tion) patent license to make, have made, use, offer to sell, sell, import, and
otherwise transfer the Work, where such license applies only to those patent
claims licensable by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s) with the
Work to which such Contribution(s) was submitted.

4. Redistribution. You may reproduce and distribute copies of the Work or
Derivative Works thereof in any medium, with or without modifications, and
in Source or Object form, provided that You meet the following conditions:
(a) You must give any other recipients of the Work or Derivative Works a

copy of this License; and
(b) You must cause any modified files to carry prominent notices stating

that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works that You

distribute, all copyright, patent, trademark, and attribution notices from
the Source form of the Work, excluding those notices that do not pertain
to any part of the Derivative Works; and

(d) If the Work includes a ”NOTICE” text file as part of its distribution,
then any Derivative Works that You distribute must include a readable
copy of the attribution notices contained within such NOTICE file, ex-
cluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file
distributed as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or, within
a display generated by the Derivative Works, if and wherever such third-
party notices normally appear. The contents of the NOTICE file are for

Copyright vii

informational purposes only and do not modify the License. You may
add Your own attribution notices within Derivative Works that You dis-
tribute, alongside or as an addendum to the NOTICE text from the Work,
provided that such additional attribution notices cannot be construed as
modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions for
use, reproduction, or distribution of Your modifications, or for any such
Derivative Works as a whole, provided Your use, reproduction, and dis-
tribution of the Work otherwise complies with the conditions stated in
this License.

(e) Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You
to the Licensor shall be under the terms and conditions of this License,
without any additional terms or conditions. Notwithstanding the above,
nothing herein shall supersede or modify the terms of any separate li-
cense agreement you may have executed with Licensor regarding such
Contributions.

5. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as re-
quired for reasonable and customary use in describing the origin of the Work
and reproducing the content of the NOTICE file.

6. Disclaimer of Warranty. Unless required by applicable law or agreed to in
writing, Licensor provides the Work (and each Contributor provides its Con-
tributions) on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, either express or implied, including, without lim-
itation, any warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE.
You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise
of permissions under this License.

7. Limitation of Liability. In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless required by applicable
law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall any Contributor be liable to You for damages, including any direct,
indirect, special, incidental, or consequential damages of any character aris-
ing as a result of this License or out of the use or inability to use the Work
(including but not limited to damages for loss of goodwill, work stoppage,
computer failure or malfunction, or any and all other commercial damages
or losses), even if such Contributor has been advised of the possibility of
such damages.

8. Accepting Warranty or Additional Liability. While redistributing the Work
or Derivative Works thereof, You may choose to offer, and charge a fee
for, acceptance of support, warranty, indemnity, or other liability obliga-
tions and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole re-

viii Copyright

sponsibility, not on behalf of any other Contributor, and only if You agree
to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an ”AS IS” BASIS, WITHOUT WARRANTIES
OR CONDITIONS OF ANY KIND, either express or implied.

Contents

ix

Preface

About This Book

Acknowledgement

xi

Part 1
Quick Start Guide

1 Introduction

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

1.1 What is ImageMagick

1.1.1 Command-line Utility

1.1.2 Application Programming Interface

1.1.3 Scripting Language

1.1.4 General Purpose Imaging Solution

1.2 Getting Help

1.2.1 Web Site

1.2.2 Mailing List

1.2.3 Defect Tracking System

3

2 Image Primer

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

2.1 What is an Image

2.2 Image Depth

2.3 Colormapped Images

2.4 Compression

2.4.1 Lossless

2.4.2 Lossy

2.5 Colorspace

2.5.1 RGB

2.5.2 CMYK

2.6 Meta-Information

2.7 Image Formats

4

3 Image Tools

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

3.0.1 Identify

3.0.2 Convert

3.0.3 Mogrify

3.0.4 Composite

3.0.5 Montage

3.0.6 Display

3.0.7 Animate

3.0.8 Import

3.0.9 Conjure

5

4 Image Transformations

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

6

4 Image Transformations 7

4.1 How to specify an image

4.1.1 Implicitly

4.1.2 Explicitly

4.1.3 By URL

4.2 Convert from one Image Format to Another

4.3 Colormap Manipulation

4.4 Resize an Image

4.5 Crop

4.6 Enhance

4.7 Effects

4.7.1 Special Effects

4.7.2 Image Preview

4.8 Decorate

4.9 Annotate

4.10 Draw

4.11 Composite

4.12 Meta-Information

4.12.1 Comment

4.13 Miscellanious Transforms

4.13.1 Append

5 Advanced ImageMagick
Features

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

8

5 Advanced ImageMagick Features 9

5.1 Working with Multi-resolution Images

5.1.1 PCD

5.1.2 PTIF

5.2 Working with an Image Sequence

5.2.1 Animation

5.2.2 Delay

5.2.3 Loop

5.3 Working with a Group of Images

5.4 Working with Raw Images

5.4.1 Size

5.4.2 Depth

5.4.3 Interlace

5.5 Using ImageMagick from a Web Browser

11

Part 2
Application Programming Interface

6 C Application Programming
Interface

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

6.1 Working with Blobs

6.2 Working with Threads

6.2.1 Posix

6.2.2 Windows

13

7 C++ Application
Programming Interface

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

7.1 Working with Blobs

7.2 Working with Threads

7.2.1 Posix

7.2.2 Windows

14

8 Perl Application
Programming Interface

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

8.1 Background

15

9 PHP Application
Programming Interface

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

9.1 Background

16

10 Other Application
Programming Interfaces

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

10.1 Java

10.2 Python

10.3 ImageMagick Integration Project

17

19

Part 3
User’s Guide

11 Image Channels

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

11.1 Working with Image Channels

21

12 Image Painting

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

12.1 Image Painting

12.1.1 Paint Type

Color

Matte

12.1.2 Paint Method

Floodfill

Point

Replace

FillToBorder

Reset

12.1.3 Fuzz Factor

22

13 Color Profiles

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

13.1 Working with Color Profiles

23

14 Image Drawing

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

14.1 SVG

14.2 MVG

24

Part 4
Installation And Administration Guide

15 Installing from Binary

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

15.1 Downloading

15.1.1 web

15.1.2 ftp

15.2 Linux RPM

15.3 Windows

15.4 VMS

15.5 Unix

15.6 Other

27

16 Installing from Source

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

16.1 Downloading

16.1.1 FTP

16.1.2 CVS

16.2 Unix

16.2.1 Configure

16.2.2 Modules

16.3 Windows

16.3.1 Configure

16.3.2 Modules

16.4 Macintosh

16.5 VMS

28

17 Customizing
ImageMagick

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

17.1 Image Depth

17.1.1 8-bit

17.1.2 16-bit

17.2 Image Cache

17.2.1 Persistent Cache

17.3 Delegates

17.3.1 Library Delegates

17.3.2 Delegates.mgk

17.4 magic.mgk

17.5 type.mgk

29

31

Part 5
Reference Manual

18 Supported Image
Formats

Listed here are the various file formats supported by ImageMagick. The Format
is the image format identifier and is typically used as the image file extension
(e.g. image.png for the PNG image format). The mode shows the type of support:
r = read; w = write; + = multi-image files. So for example, a mode of rw+ means
ImageMagick can read, write, and save more than one image of a sequence to the
same blob or file. Finally the description tells what the image format is in case
you cannot tell directly from the format identifier (e.g. 8BIM is the Photoshop
resource format).

Table18.1: Supported Image Formats

Supported Image Formats

Format Mode Description
8BIM rw- Photoshop resource format
AFM r– TrueType font
APP1 rw- Photoshop resource format
ART r– PF1: 1st Publisher
AVI r– Audio/Visual Interleaved
AVS rw+ AVS X image
BIE rw- Joint Bi-level Image experts Group interchange format
BMP rw+ Microsoft Windows bitmap image
CAPTION *r+ Caption (requires separate size info)
CMYK rw- Raw cyan, magenta, yellow, and black samples

(8 or 16 bits, depending on the image depth)
CMYKA rw- Raw cyan, magenta, yellow, black, and matte samples

(8 or 16 bits, depending on the image depth)
CUT r– DR Halo
DCM r– Digital Imaging and Communications in Medicine image

33

34 ImageMagick

Supported Image Formats (continued)

Format Mode Description
DCX rw+ ZSoft IBM PC multi-page Paintbrush
DIB rw+ Microsoft Windows bitmap image
DPS r– Display Postscript
DPX r– Digital Moving Picture Exchange
EPDF rw- Encapsulated Portable Document Format
EPI rw- Adobe Encapsulated PostScript Interchange format
EPS rw- Adobe Encapsulated PostScript
EPS2 -w- Adobe Level II Encapsulated PostScript
EPS3 -w- Adobe Level III Encapsulated PostScript
EPSF rw- Adobe Encapsulated PostScript
EPSI rw- Adobe Encapsulated PostScript Interchange format
EPT rw- Adobe Encapsulated PostScript with TIFF preview
FAX rw+ Group 3 FAX
FILE r– Uniform Resource Locator
FITS rw- Flexible Image Transport System
FPX rw- FlashPix Format
FTP r– Uniform Resource Locator
G3 rw- Group 3 FAX
GIF rw+ CompuServe graphics interchange format
GIF87 rw- CompuServe graphics interchange format (version 87a)
GRADIENT r– Gradual passing from one shade to another
GRANITE r– Granite texture
GRAY rw+ Raw gray samples (8 or 16 bits, depending on the

image depth)
H rw- Internal format
HDF rw+ Hierarchical Data Format
HISTOGRAM -w- Histogram of the image
HTM -w- Hypertext Markup Language and a client-side image map
HTML -w- Hypertext Markup Language and a client-side image map
HTTP r– Uniform Resource Locator
ICB rw+ Truevision Targa image
ICM rw- ICC Color Profile
ICO r– Microsoft icon
ICON r– Microsoft icon
IMPLICIT —
IPTC rw- IPTC Newsphoto
JBG rw+ Joint Bi-level Image experts Group interchange format
JBIG rw+ Joint Bi-level Image experts Group interchange format
JP2 rw- JPEG-2000 JP2 File Format Syntax
JPC rw- JPEG-2000 Code Stream Syntax
JPEG rw- Joint Photographic Experts Group JFIF format

18 Supported Image Formats 35

Supported Image Formats (continued)

Format Mode Description
JPG rw- Joint Photographic Experts Group JFIF format
LABEL r– Text image format
LOGO rw- ImageMagick Logo
M2V rw+ MPEG-2 Video Stream
MAP rw- Colormap intensities (8 or 16 bits, depending on

the image depth) and indices (8 or 16 bits, depending
on whethercolors ≤ 256).

MAT -w+ MATLAB image format
MATTE -w+ MATTE format
MIFF rw+ Magick image format
MNG rw+ Multiple-image Network Graphics
MONO rw- Bi-level bitmap in least-significant-byte first order
MPC rw- Magick Persistent Cache image format
MPEG rw+ MPEG-1 Video Stream
MPG rw+ MPEG-1 Video Stream
MPR r– Magick Persistent Registry
MSL r– Magick Scripting Language
MTV rw+ MTV Raytracing image format
MVG rw- Magick Vector Graphics
NETSCAPE r– Netscape 216 color cube
NULL r– Constant image of uniform color
OTB rw- On-the-air bitmap
P7 rw+ Xv thumbnail format
PAL rw- 16bit/pixel interleaved YUV
PALM rw- PALM Pixmap
PBM rw+ Portable bitmap format (black and white)
PCD rw- Photo CD
PCDS rw- Photo CD
PCL -w- Page Control Language
PCT rw- Apple Macintosh QuickDraw/PICT
PCX rw- ZSoft IBM PC Paintbrush
PDB r– Pilot Image Format
PDF rw+ Portable Document Format
PFA r– TrueType font
PFB r– TrueType font
PFM r– TrueType font
PGM rw+ Portable graymap format (gray scale)
PICON rw- Personal Icon
PICT rw- Apple Macintosh QuickDraw/PICT
PIX r– Alias/Wavefront RLE image format
PLASMA r– Plasma fractal image

36 ImageMagick

Supported Image Formats (continued)

Format Mode Description
PM rw- X Windows system pixmap (color)
PNG rw- Portable Network Graphics
PNM rw+ Portable anymap
PPM rw+ Portable pixmap format (color)
PREVIEW -w- Show a preview an image enhancement, effect, or f/x
PS rw+ Adobe PostScript
PS2 -w+ Adobe Level II PostScript
PS3 -w+ Adobe Level III PostScript
PSD rw- Adobe Photoshop bitmap
PTIF rw- Pyramid encoded TIFF
PWP r– Seattle Film Works
RAS rw+ SUN Rasterfile
RGB rw+ Raw red, green, and blue samples (8 or 16 bits,

depending on the image depth)
RGBA rw+ Raw red, green, blue, and matte samples (8 or 16

bits, depending on the image depth)
RLA r– Alias/Wavefront image
RLE r– Utah Run length encoded image
ROSE *rw- 70x46 Truecolor test image
SCT r– Scitex HandShake
SFW r– Seattle Film Works
SGI rw+ Irix RGB image
SHTML -w- Hypertext Markup Language and a client-side image map
STEGANO r– Steganographic image
SUN rw+ SUN Rasterfile
SVG rw+ Scalable Vector Gaphics
TEXT rw+ Raw text
TGA rw+ Truevision Targa image
TIF rw+ Tagged Image File Format
TIFF rw+ Tagged Image File Format
TILE r– Tile image with a texture
TIM r– PSX TIM
TTF r– TrueType font
TXT rw+ Raw text
UIL -w- X-Motif UIL table
UYVY rw- 16bit/pixel interleaved YUV
VDA rw+ Truevision Targa image
VICAR rw- VICAR rasterfile format
VID rw+ Visual Image Directory
VIFF rw+ Khoros Visualization image
VST rw+ Truevision Targa image

18 Supported Image Formats 37

Supported Image Formats (continued)

Format Mode Description
WBMP rw- Wireless Bitmap (level 0) image
WMF r– Windows Metafile
WPG r– Word Perfect Graphics
X rw- X Image
XBM rw- X Windows system bitmap (black and white)
XC r– Constant image uniform color
XCF r– GIMP image
XML r– Scalable Vector Gaphics
XPM rw- X Windows system pixmap (color)
XV rw+ Khoros Visualization image
XWD rw- X Windows system window dump (color)
YUV rw- CCIR 601 4:1:1

Your installation might not support all of the formats in the list. To get an up-
to-date listing of the formats supported by your particular configuration, run
”convert -list format ”.

19 Commandline Options

This is a combined list of the commandline options used by the ImageMag-
ick utilities (animate, composite, convert, display, identify, import, mogrifyand
montage).

In this document, angle brackets (“<>”) enclose variables and curly brack-
ets (“{}”) enclose optional parameters. For example, “-fuzz <distance>{%}”
means you can use the option"-fuzz 10" or "-fuzz 2%" .

-adjoin join images into a single multi-image file

By default, all images of an image sequence are stored in the same file. However,
some formats (e.g. JPEG) do not support more than one image and are saved to
separate files. Use+adjoin to force this behavior.

-affine <matrix > drawing transformation matrix

This option provides a transformation matrix{sx,rx,ry,sy,tx,ty } for
use by subsequent-draw or -transform options.

The transformation matrix has 3x3 elements, but three of them are omitted from
the input because they are constant. The complete matrix is

sx rx 0
ry sy 0
tx ty 1

Scaling by the factors is accomplished with the matrix

{s,0,0,s,0,0}

Translation by a displacement{dx,dy } is accomplished with the matrix

{1,0,0,1,dx,dy}

38

19 Commandline Options 39

Rotation counterclockwise about the origin by an anglea is accomplished with
the matrix

{cos(a),sin(a),-sin(a),cos(a),0,0}

A series of operations can be accomplished by using a matrix that is the multiple
of the matrices for each operation.

-antialias remove pixel aliasing

By default antialiasing algorithms are used when drawing objects (e.g. lines) or
rendering vector formats (e.g. WMF and Postscript). Use +antialias to disable
use of antialiasing algorithms. Reasons to disable antialiasing

include avoiding increasing colors in the image, or improving rendering speed.

-append append a set of images

This option creates a single image where the images in the original set are
stacked top-to-bottom. If they are not of the same width, any narrow images
will be expanded to fit using the background color. Use+append to stack im-
ages left-to-right. The set of images is terminated by the appearance of any op-
tion. If the -appendoption appears after all of the input images, all images are
appended.

-authenticate <string > decrypt image with this password

Use this option to supply a password for decrypting an image or an image se-
quence, if it is being read from a format such as PDF that supports encryption.
Encrypting images being written is not supported.

-average average a set of images

The set of images is terminated by the appearance of any option. If the-average
option appears after all of the input images, all images are averaged.

-backdrop <color > display the image centered on a backdrop.

This backdrop covers the entire workstation screen and is useful for hiding other
X window activity while viewing the image. The color of the backdrop is spec-
ified as the background color. The color is specified using the format described
under the-fill option. Refer to “X Resources” in the manual page fordisplayfor
details.

-background <color > the background color

The color is specified using the format described under the-fill option.

40 ImageMagick

-blue-primary <x>,<y> blue chromaticity primary point

-blur <radius >{x<sigma >} blur the image with a Gaussian operator

Blur with the given radius and standard deviation (sigma).

-border <width >x<height > surround the image with a border of color

See-geometryfor details about the geometry specification.

-bordercolor <color > the border color

The color is specified using the format described under the-fill option.

-borderwidth <geometry > the border width

-box <color > set the color of the annotation bounding box

The color is specified using the format described under the-fill option.

See-draw for further details.

-channel <type > the type of channel

Choose from:Red, Green, Blue, Alpha, Cyan, Magenta, Yellow, Black, or
All.

Use this option to apply an image-processing option to a particularchannelfrom
the image.

-charcoal <factor > simulate a charcoal drawing

-chop <width >x<height >{+-}<x>{+-}<y>{%} remove pixels from the in-
terior of an image

Width andheightgive the number of columns and rows to remove, andx and
y are offsets that give the location of the leftmost column and topmost row to
remove.

The x offset normally specifies the leftmost column to remove. If the-gravity
option is present withNorthEast, East,or SouthEastgravity, it gives the distance
leftward from the right edge of the image to the rightmost column to remove.
Similarly, they offset normally specifies the topmost row to remove, but if the-
gravity option is present withSouthWest, South,orSouthEastgravity, it specifies

19 Commandline Options 41

the distance upward from the bottom edge of the image to the bottom row to
remove.

The -chop option removes entire rows and columns, and moves the remaining
corner blocks leftward and upward to close the gaps.

-clip apply the clipping path, if one is present

If a clipping path is present, it will be applied to subsequent operations.

For example, if you type the following command:

convert -clip -negate cockatoo.tif negated.tif

only the pixels within the clipping path are negated.

The -clip feature requires the XML library. If the XML library is not present,
the option is ignored.

-coalesce merge a sequence of images

Each image N in the sequence after Image 0 is replaced with the image created
by flattening images 0 through N.

The set of images is terminated by the appearance of any option. If the-coalesce
option appears after all of the input images, all images are coalesced.

-colorize <value > colorize the image with the pen color

Specify the amount of colorization as a percentage. You can apply separate col-
orization values to the red, green, and blue channels of the image with a col-
orization value list delimited with slashes (e.g. 0/0/50).

-colormap <type > define the colormap type

Choose betweensharedor private.

This option only applies when the default X server visual isPseudoColoror
GRAYScale. Refer to-visual for more details. By default, a shared colormap
is allocated. The image shares colors with other X clients. Some image colors
could be approximated, therefore your image may look very different than in-
tended. ChoosePrivate and the image colors appear exactly as they are defined.
However, other clients may gotechnicolorwhen the image colormap is installed.

-colors <value > preferred number of colors in the image

The actual number of colors in the image may be less than your request, but
never more. Note, this is a color reduction option. Images with less unique colors

42 ImageMagick

than specified with this option will have any duplicate or unused colors removed.
Refer to quantize for more details.

Note, options-dither , -colorspace, and -treedepth affect the color reduction
algorithm.

-colorspace <value > the type of colorspace

Choices are:GRAY , OHTA , RGB, Transparent, XYZ , YCbCr , YIQ , YPbPr,
YUV , or CMYK .

Color reduction, by default, takes place in the RGB color space. Empirical ev-
idence suggests that distances in color spaces such as YUV or YIQ correspond
to perceptual color differences more closely than do distances in RGB space.
These color spaces may give better results when color reducing an image. Refer
to quantize for more details.

The Transparent color space behaves uniquely in that it preserves the matte
channel of the image if it exists.

The-colorsor -monochromeoption is required for this option to take effect.

-comment <string > annotate an image with a comment

Use this option to assign a specific comment to the image, when writing to an
image format that supports comments. You can include the image filename, type,
width, height, or other image attribute by embedding special format characters
listed under the-format option. The comment is not drawn on the image, but is
embedded in the image datastream via a “Comment” tag or similar mechanism.
If you want the comment to be visible on the image itself, use the-draw option.

For example,

-comment "%m:%f %wx%h"

produces an image comment ofMIFF:bird.miff 512x480 for an image titled
bird.miff and whose width is 512 and height is 480.

If the first character ofstring is @, the image comment is read from a file titled
by the remaining characters in the string.

-compose <operator > the type of image composition

By default, each of the composite image pixels are replaced by the corresponding
image tile pixel. You can choose an alternate composite operation:

Over
In

19 Commandline Options 43

Out
Atop
Xor
Plus
Minus
Add
Subtract
Difference
Multiply
Bumpmap
Copy
CopyRed
CopyGreen
CopyBlue
CopyOpacity

How each operator behaves is described below.

Over
The result will be the union of the two image shapes, with opaque areas of
composite imageobscuringimagein the region of overlap.

In
The result is simplycomposite imagecut by the shape ofimage. None of the
image data ofimagewill be in the result.

Out
The resulting image iscomposite imagewith the shape ofimagecut out.

Atop
The result is the same shape as imageimage, with composite imageobscur-
ing imagewhere the image shapes overlap. Note this differs fromover be-
cause the portion ofcomposite imageoutsideimage’s shape does not appear
in the result.

Xor
The result is the image data from bothcomposite imageand imagethat is
outside the overlap region. The overlap region will be blank.

Plus
The result is just the sum of the image data. Output values are cropped to
MaxRGB (no overflow).

Minus
The result ofcomposite image- image, with underflow cropped to zero.

Add
The result ofcomposite image+ image, with overflow wrapping around
(mod(MaxRGB+1)).

Subtract
The result ofcomposite image- image, with underflow wrapping around
(mod (MaxRGB+1)). Theadd andsubtract operators can be used to per-
form reversible transformations.

44 ImageMagick

Difference
The result of abs(composite image- image). This is useful for comparing
two very similar images.

Multiply
The result ofcomposite image* image. This is useful for the creation of
drop-shadows.

Bumpmap
The resultimageshaded bycomposite image.

Copy
The resulting image isimagereplaced withcomposite image. Here the matte
information is ignored.

CopyRed
The resulting image is the red layer inimagereplaced with the red layer in
composite image. The other layers are copied untouched.

CopyGreen
The resulting image is the green layer inimagereplaced with the green layer
in composite image. The other layers are copied untouched.

CopyBlue
The resulting image is the blue layer inimagereplaced with the blue layer
in composite image. The other layers are copied untouched.

CopyOpacity
The resulting image is the matte layer inimagereplaced with the matte layer
in composite image. The other layers are copied untouched.

The image compositor requires a matte, or alpha channel in the image for some
operations. This extra channel usually defines a mask which represents a sort
of a cookie-cutter for the image. This is the case when matte is opaque (full
coverage) for pixels inside the shape, zero outside, and between 0 and MaxRGB
on the boundary. For certain operations, ifimagedoes not have a matte channel,
it is initialized with 0 for any pixel matching in color to pixel location (0,0),
otherwise MaxRGB (to work properlyborderwidth must be 0).

-compress <type > the type of image compression

Choices are:None, BZip, Fax, Group4, JPEG, Lossless, LZW, RLEor Zip.

Specify+compressto store the binary image in an uncompressed format. The
default is the compression type of the specified image file.

If LZW compression is specified but LZW compression has not been enabled,
the image data will be written in an uncompressed LZW format that can be read
by LZW decoders. This may result in larger-than-expected GIF files.

“Lossless” refers to lossless JPEG, which is only available if the JPEG library
has been patched to support it.

Use the-quality option to set the compression level to be used by JPEG, PNG,
MIFF, and MPEG encoders. Use the-sampling-factoroption to set the sampling
factor to be used by JPEG, MPEG, and YUV encoders for downsampling the
chroma channels.

19 Commandline Options 45

-contrast enhance or reduce the image contrast

This option enhances the intensity differences between the lighter and darker
elements of the image. Use-contrast to enhance the image or+contrast to
reduce the image contrast.

For a more pronounced effect you can repeat the option:

convert rose: -contrast -contrast rose_c2.png

-convolve <kernel > convolve image with the specified convolution kernel

The kernel is specified as a comma-separated list of integers, ordered left-to
right, starting with the top row. The order of the kernel is determined by the
square root of the number of entries. Presently only square kernels are supported.

-crop <width >x<height >{+-}<x>{+-}<y>{%} preferred size and location
of the cropped image

See-geometryfor details about the geometry specification.

The width and height give the size of the image that remains after cropping, and
x andy are offsets that give the location of the top left corner of the cropped
image with respect to the original image. To specify the amount to be removed,
use-shaveinstead.

If the x andy offsets are present, a single image is generated, consisting of the
pixels from the cropping region. The offsets specify the location of the upper
left corner of the cropping region measured downward and rightward with re-
spect to the upper left corner of the image. If the-gravity option is present with
NorthEast, East,or SouthEastgravity, it gives the distance leftward from the
right edge of the image to the right edge of the cropping region. Similarly, if
the -gravity option is present withSouthWest, South,or SouthEastgravity, the
distance is measured upward between the bottom edges.

If the x andy offsets are omitted, a set of tiles of the specified geometry, covering
the entire input image, is generated. The rightmost tiles and the bottom tiles are
smaller if the specified geometry extends beyond the dimensions of the input
image.

-cycle <amount > displace image colormap by amount

Amountdefines the number of positions each colormap entry is shifted.

-debug <events > enable debug printout

Theevents parameter specifies which events are to be logged. It can be either
None, All , or a comma-separated list consisting of one or more of the fol-
lowing domains:Annotate , Blob , Cache , Coder , Configure , Locale ,

46 ImageMagick

Render , Resource , Transform , X11, or User . For example, to log cache
and blob events, use

convert -debug "Cache,Blob" rose: rose.png

The “User” domain is normally empty, but developers can log ”User” events in
their private copy of ImageMagick.

Use the-log option to specify the format for debugging output.

Use+debugto turn off all logging.

-delete <index > delete image from the image sequence.

-deconstruct break down an image sequence into constituent parts

This option compares each image with the next in a sequence and returns the
maximum bounding region of any pixel differences it discovers. This method
can undo a coalesced sequence returned by the-coalesceoption, and is useful
for removing redundant information from a GIF or MNG animation.

The sequence of images is terminated by the appearance of any option. If the
-deconstructoption appears after all of the input images, all images are decon-
structed.

-delay <1/100ths of a second > display the next image after pausing

This option is useful for regulating the animation of image sequencesDelay/100
seconds must expire before the display of the next image. The default is no delay
between each showing of the image sequence. The maximum delay is 65535.

You can specify a delay range (e.g.-delay 10-500) which sets the minimum and
maximum delay.

-density <width >x<height > vertical and horizontal resolution in pixels of the
image

This option specifies an image density when decoding aPostScriptor Portable
Document page. The default is 72 dots per inch in the horizontal and vertical
direction. This option is used in concert with-page.

-depth <value > depth of the image

This is the number of bits in a color sample within a pixel. The only acceptable
values are 8 or 16. Use this option to specify the depth of raw images whose
depth is unknown such as GRAY, RGB, or CMYK, or to change the depth of
any image after it has been read.

19 Commandline Options 47

-descend obtain image by descending window hierarchy

-despeckle reduce the speckles within an image

-displace <horizontal scale >x<vertical scale > shift image pixels as defined
by a displacement map

With this option,composite imageis used as a displacement map. Black, within
the displacement map, is a maximum positive displacement. White is a max-
imum negative displacement and middle gray is neutral. The displacement is
scaled to determine the pixel shift. By default, the displacement applies in both
the horizontal and vertical directions. However, if you specifymask, composite
imageis the horizontal X displacement andmaskthe vertical Y displacement.

-display <host:display[.screen] > specifies the X server to contact

This option is used with convert for obtaining image or font from this X server.
SeeX(1).

-dispose <method > GIF disposal method

The Disposal Method indicates the way in which the graphic is to be treated after
being displayed.

Here are the valid methods:

Undefined No disposal specified.
None Do not dispose between frames.
Background Overwrite the image area with

the background color.
Previous Overwrite the image area with

what was there prior to rendering
the image.

-dissolve <percent > dissolve an image into another by the given percent

The opacity of the composite image is multiplied by the given percent, then it is
composited over the main image.

-dither apply Floyd/Steinberg error diffusion to the image

The basic strategy of dithering is to trade intensity resolution for spatial reso-
lution by averaging the intensities of several neighboring pixels. Images which
suffer from severe contouring when reducing colors can be improved with this
option.

48 ImageMagick

The-colorsor -monochromeoption is required for this option to take effect.

Use+dither to turn off dithering and to render PostScript without text or graphic
aliasing.

-draw <string > annotate an image with one or more graphic primitives

Use this option to annotate an image with one or more graphic primitives. The
primitives include shapes, text, transformations, and pixel operations. The shape
primitives are

point x,y
line x0,y0 x1,y1
rectangle x0,y0 x1,y1
roundRectangle x0,y0 x1,y1 wc,hc
arc x0,y0 x1,y1 a0,a1
ellipse x0,y0 rx,ry a0,a1
circle x0,y0 x1,y1
polyline x0,y0 ... xn,yn
polygon x0,y0 ... xn,yn
Bezier x0,y0 ... xn,yn
path path specification
image operator x0,y0 w,h filename

The text primitive is

text x0,y0 string

The text gravity primitive is

gravity NorthWest, North, NorthEast, West, Center,
East, SouthWest, South, or SouthEast

The text gravity primitive only affects the placement of text and does not interact
with the other primitives. It is equivalent to using the-gravity commandline
option, except that it is limited in scope to the-draw option in which it appears.

The transformation primitives are

rotate degrees
translate dx,dy
scale sx,sy
skewX degrees
skewY degrees

The pixel operation primitives are

19 Commandline Options 49

color x0,y0 method
matte x0,y0 method

The shape primitives are drawn in the color specified in the preceding-stroke
option. Except for theline andpoint primitives, they are filled with the color
specified in the preceding-fill option. For unfilled shapes, use-fill none .

Point requires a single coordinate.

Line requires a start and end coordinate.

Rectangleexpects an upper left and lower right coordinate.

RoundRectanglehas the upper left and lower right coordinates and the width
and height of the corners.

Circle has a center coordinate and a coordinate for the outer edge.

UseArc to inscribe an elliptical arc within a rectangle. Arcs require a start and
end point as well as the degree of rotation (e.g. 130,30 200,100 45,90).

Use Ellipse to draw a partial ellipse centered at the given point with the x-
axis and y-axis radius and start and end of arc in degrees (e.g. 100,100 100,150
0,360).

Finally, polyline and polygon require three or more coordinates to define its
boundaries. Coordinates are integers separated by an optional comma. For ex-
ample, to define a circle centered at 100,100 that extends to 150,150 use:

-draw ’circle 100,100 150,150’

Paths(See Paths) represent an outline of an object which is defined in terms of
moveto (set a new current point), lineto (draw a straight line), curveto (draw a
curve using a cubic Bezier), arc (elliptical or circular arc) and closepath (close
the current shape by drawing a line to the last moveto) elements. Compound
paths (i.e., a path with subpaths, each consisting of a single moveto followed by
one or more line or curve operations) are possible to allow effects such as “donut
holes” in objects.

Use image to composite an image with another image. Follow the image key-
word with the composite operator, image location, image size, and filename:

-draw ’image Over 100,100 225,225 image.jpg’

You can use 0,0 for the image size, which means to use the actual dimensions
found in the image header. Otherwise, it will be scaled to the given dimensions.
See-composefor a description of the composite operators.

Usetext to annotate an image with text. Follow the text coordinates with a string.
If the string has embedded spaces, enclose it in double quotes. Optionally you
can include the image filename, type, width, height, or other image attribute by
embedding special format character. See-commentfor details.

50 ImageMagick

For example,

-draw ’text 100,100 "%m:%f %wx%h"’

annotates the image withMIFF:bird.miff 512x480 for an image titled
bird.miff and whose width is 512 and height is 480.

If the first character ofstring is @, the text is read from a file titled by the
remaining characters in the string.

Rotate rotates subsequent shape primitives and text primitives about the origen
of the main image. If the-region option precedes the-draw option, the origen
for transformations is the upper left corner of the region.

Translate translates them.

Scalescales them.

SkewX andSkewY skew them with respect to the origen of the main image or
the region.

The transformations modify the current affine matrix, which is initialized from
the initial affine matrix defined by the-affine option. Transformations are cu-
mulative within the-draw option. The initial affine matrix is not affected; that
matrix is only changed by the appearance of another-affine option. If another
-draw option appears, the current affine matrix is reinitialized from the initial
affine matrix.

Usecolor to change the color of a pixel to the fill color (see-fill). Follow the
pixel coordinate with a method:

point
replace
floodfill
filltoborder
reset

Consider the target pixel as that specified by your coordinate. Thepoint method
recolors the target pixel. Thereplacemethod recolors any pixel that matches the
color of the target pixel.Floodfill recolors any pixel that matches the color of
the target pixel and is a neighbor, whereasfilltoborder recolors any neighbor
pixel that is not the border color. Finally,resetrecolors all pixels.

Usematte to the change the pixel matte value to transparent. Follow the pixel
coordinate with a method (see thecolor primitive for a description of meth-
ods). Thepoint method changes the matte value of the target pixel. Thereplace
method changes the matte value of any pixel that matches the color of the target
pixel. Floodfill changes the matte value of any pixel that matches the color of
the target pixel and is a neighbor, whereasfilltoborder changes the matte value
of any neighbor pixel that is not the border color (-bordercolor). Finally reset
changes the matte value of all pixels.

19 Commandline Options 51

You can set the primitive color, font, and font bounding box color with-fill , -
font, and-box respectively. Options are processed in command line order so be
sure to use these optionsbeforethe-draw option.

-edge <radius > detect edges within an image

-emboss <radius > emboss an image

-encoding <type > specify the text encoding

Choose fromAdobeCustom, AdobeExpert, AdobeStandard, AppleRoman, BIG5,
GB2312, Latin 2, None, SJIScode, Symbol, Unicode, Wansung.

-endian <type > specify endianness (MSB or LSB) of output image

Use+endian to revert to unspecified endianness.

-enhance apply a digital filter to enhance a noisy image

-equalize perform histogram equalization to the image

-extract <width >x<height >{+-}<x>{+-}<y>{%}{@} {!}{<}{>} extract
an area from the image while decoding

-fill <color > color to use when filling a graphic primitive

Colors are represented in ImageMagick in the same form used by SVG:

name ("convert -list color" to see names)
#RGB (R,G,B are hex numbers, 4 bits each)
#RRGGBB (8 bits each)
#RRRGGGBBB (12 bits each)
#RRRRGGGGBBBB (16 bits each)
#RGBA (4 bits each)
#RRGGBBAA (8 bits each)
#RRRGGGBBBAAA (12 bits each)
#RRRRGGGGBBBBAAAA (16 bits each)
rgb(r,g,b) (r,g,b are decimal numbers)
rgba(r,g,b,a) (r,g,b,a are decimal numbers)

52 ImageMagick

Enclose the color specification in quotation marks to prevent the “#” or the
parentheses from being interpreted by your shell.

For example,

convert -fill blue ...
convert -fill "#ddddff" ...
convert -fill "rgb(65000,65000,65535)" ...

The shorter forms are scaled up, if necessary by replication. For example, #3af,
#33aaff, and #3333aaaaffff are all equivalent.

See-draw for further details.

-filter <type > use this type of filter when resizing an image

Use this option to affect the resizing operation of an image (see-geometry).
Choose from these filters:

Point
Box
Triangle
Hermite
Hanning
Hamming
Blackman
Gaussian
Quadratic
Cubic
Catrom
Mitchell
Lanczos
Bessel
Sinc

The default filter isLanczos

-flatten flatten a sequence of images

The sequence of images is replaced by a single image created by composing
each image after the first over the first image.

The sequence of images is terminated by the appearance of any option. If the
-flatten option appears after all of the input images, all images are flattened.

-flip create a “mirror image”

reflect the scanlines in the vertical direction.

19 Commandline Options 53

-flop create a “mirror image”

reflect the scanlines in the horizontal direction.

-font <name> use this font when annotating the image with text

You can tag a font to specify whether it is a PostScript, TrueType, or OPTION1
font. For example,Arial.ttf is a TrueType font,ps:helvetica is PostScript,
andx:fixed is OPTION1.

-foreground <color > define the foreground color

The color is specified using the format described under the-fill option.

-format <type > the image format type

When used with themogrify utility, this option will convert any image to the
image format you specify. SeeImageMagick(1)for a list of image format types
supported byImageMagick.

By default the file is written to its original name. However, if the filename exten-
sion matches a supported format, the extension is replaced with the image format
type specified with-format . For example, if you specifytiff as the format type
and the input image filename isimage.gif, the output image filename becomes
image.tiff.

-format <string > output formatted image characteristics

When used with theidentify utility, use this option to print information about
the image in a format of your choosing. You can include the image filename,
type, width, height, Exif data, or other image attributes by embedding special
format characters:

%b file size
%c comment
%d directory
%e filename extension
%f filename
%g page geometry
%h height
%i input filename
%k number of unique colors
%l label
%m magick
%n number of scenes
%o output filename

54 ImageMagick

%p page number
%q quantum depth
%s scene number
%t top of filename
%u unique temporary filename
%w width
%x x resolution
%y y resolution
%z image depth
%# signature
\n newline
\r carriage return

For example,

-format "%m:%f %wx%h"

displaysMIFF:bird.miff 512x480 for an image titledbird.miff and whose
width is 512 and height is 480.

If the first character ofstring is @, the format is read from a file titled by the
remaining characters in the string.

You can also use the following special formatting syntax to print Exif informa-
tion contained in the file:

%[EXIF:<tag>]

Where “<tag>” can be one of the following:

* (print all Exif tags, in keyword=data format)
! (print all Exif tags, in tag_number data format)
#hhhh (print data for Exif tag #hhhh)
ImageWidth
ImageLength
BitsPerSample
Compression
PhotometricInterpretation
FillOrder
DocumentName
ImageDescription
Make
Model
StripOffsets
Orientation
SamplesPerPixel
RowsPerStrip

19 Commandline Options 55

StripByteCounts
XResolution
YResolution
PlanarConfiguration
ResolutionUnit
TransferFunction
Software
DateTime
Artist
WhitePoint
PrimaryChromaticities
TransferRange
JPEGProc
JPEGInterchangeFormat
JPEGInterchangeFormatLength
YCbCrCoefficients
YCbCrSubSampling
YCbCrPositioning
ReferenceBlackWhite
CFARepeatPatternDim
CFAPattern
BatteryLevel
Copyright
ExposureTime
FNumber
IPTC/NAA
ExifOffset
InterColorProfile
ExposureProgram
SpectralSensitivity
GPSInfo
ISOSpeedRatings
OECF
ExifVersion
DateTimeOriginal
DateTimeDigitized
ComponentsConfiguration
CompressedBitsPerPixel
ShutterSpeedValue
ApertureValue
BrightnessValue
ExposureBiasValue
MaxApertureValue
SubjectDistance
MeteringMode
LightSource

56 ImageMagick

Flash
FocalLength
MakerNote
UserComment
SubSecTime
SubSecTimeOriginal
SubSecTimeDigitized
FlashPixVersion
ColorSpace
ExifImageWidth
ExifImageLength
InteroperabilityOffset
FlashEnergy
SpatialFrequencyResponse
FocalPlaneXResolution
FocalPlaneYResolution
FocalPlaneResolutionUnit
SubjectLocation
ExposureIndex
SensingMethod
FileSource
SceneType

Surround the format specification with quotation marks to prevent your shell
from misinterpreting any spaces and square brackets.

-frame <width >x<height >+<outer bevel width >+<inner bevel width >

-fx <expression > apply the mathematical expression an image or image channels.

For example, to extract the matte channel of the image (this is the negative to
what is commonly thought of as the alpha channel mask of the image), use:

convert drawn.png -fx ’a’ +matte matte.png

Mathematic operators include

constants MaxRGB, Opaque, Transparent, Pi standard operators: +, -, *, etc.
math function name: abs(), acos(), asin(), atan(), cos(), exp(), log(), ln(), max(),
min(), rand(), sin(), sqrt(), tan() symbols: u = first image in sequence v = second
image in sequence i = the current column j = the current row p = pixel to use
(absolute or relative to current pixel) w = width of this image h = height of this
image r = red value (from RGBA), of a specific or current pixel g = green ” b
= blue ” a = alpha ” c = cyan value of CMYK color of pixel y = yellow ” m =
magenta ” k = black ” intensity = grayscale value

Specify the image source using an image index represented by ‘u’, starting at
zero for the first image, (eg: ‘u[3]’ is the fourth image in the image sequence). A

19 Commandline Options 57

negative image index counts images from the end of the current image sequence,
therefore ‘u[-1]’ refers to the last image in the sequence.

Without an index ‘u’ or ‘v’ represent the first and second image of the sequence.
If no image is specified, the ‘u’ image is used.

For example to reduce the intensity of the red channel by 50

convert image.png -channel red -fx ’u/2.0’ image.jpg

The pixels are processed one at a time, but a different pixel of a image can be
specified with a pixel index represented by ‘p’. For example,

p[-1].g Green value of pixel to the immediate left of current

p[-1,-1].r Red value, diagonally left and up from current pixel

To specify an absolute position, use braces, rather than brackets

p12,34.b is the blue pixel at image location 12,34

The other symbols specify the value you wish to retrieve.

A pixel outside the boundary of the image has a value dictated by the -virtual-
pixel option setting.

The -channel setting can be used to specify the output channel of the result. If no
output channel is given the result is set over all RGBA channels. For example,
suppose you want to replace the red channel of alpha.png with the average of the
green channels from the images alpha.png and beta.png, use:

convert alpha.png beta.png -channel red
-fx ’(u.g+v.g)/2’ gamma.png

Note that all the original images in the current image sequence are replaced by
the updated ‘alpha.png’ image. surround the image with an ornamental border

See-geometry for details about the geometry specification. The-frame option
is not affected by the-gravity option.

The color of the border is specified with the-mattecolor command line option.

-frame include the X window frame in the imported image

-fuzz <distance >{%} colors within this distance are considered equal

A number of algorithms search for a target color. By default the color must be
exact. Use this option to match colors that are close to the target color in RGB
space. For example, if you want to automatically trim the edges of an image with
-trim but the image was scanned and the target background color may differ by
a small amount. This option can account for these differences.

Thedistancecan be in absolute intensity units or, by appending“%” , as a per-
centage of the maximum possible intensity (255 or 65535).

58 ImageMagick

-fx <fx-image > <expression > Rapplies a mathematical expression to the spec-
ified image channel(s).

-gamma <value > level of gamma correction

The same color image displayed on two different workstations may look differ-
ent due to differences in the display monitor. Use gamma correction to adjust
for this color difference. Reasonable values extend from0.8 to 2.3. Gamma less
than 1.0 darkens the image and gamma greater than 1.0 lightens it.

You can apply separate gamma values to the red, green, and blue channels of the
image with a gamma value list delimited with slashes (e.g.,1.7/2.3/1.2).

Use+gammavalueto set the image gamma level without actually adjusting the
image pixels. This option is useful if the image is of a known gamma but not set
as an image attribute (e.g. PNG images).

-Gaussian <radius >{x<sigma >} blur the image with a Gaussian operator

Use the given radius and standard deviation (sigma).

-geometry <width >x<height >{+-}<x>{+-}<y>{%}{@} {!}{<}{>} pre-
ferred size and location of the Image window.

By default, the window size is the image size and the location is chosen by you
when it is mapped.

By default, the width and height are maximum values. That is, the image is ex-
panded or contracted to fit the width and height value while maintaining the as-
pect ratio of the image.Append an exclamation point to the geometry to force the
image size to exactly the size you specify. For example, if you specify640x480!
the image width is set to 640 pixels and height to 480.

If only the width is specified, the width assumes the value and the height is
chosen to maintain the aspect ratio of the image. Similarly, if only the height is
specified (e.g.,-geometry x256), the width is chosen to maintain the aspect
ratio.

To specify a percentage width or height instead, append %. The image size is
multiplied by the width and height percentages to obtain the final image dimen-
sions. To increase the size of an image, use a value greater than 100 (e.g. 125%).
To decrease an image’s size, use a percentage less than 100.

Use@to specify the maximum area in pixels of an image.

Use> to change the dimensions of the imageonly if its width or height exceeds
the geometry specification.< resizes the imageonly if both of its dimensions are
less than the geometry specification. For example, if you specify’640x480 >’
and the image size is 256x256, the image size does not change. However, if the

19 Commandline Options 59

image is 512x512 or 1024x1024, it is resized to 480x480. Enclose the geometry
specification in quotation marks to prevent the< or > from being interpreted by
your shell as a file redirection.

When used withanimateanddisplay, offsets are handled in the same manner
as in X(1) and the-gravity option is not used. If thex is negative, the offset
is measured leftward from the right edge of the screen to the right edge of the
image being displayed. Similarly, negativey is measured between the bottom
edges. The offsets are not affected by “%”; they are always measured in pixels.

When used as acompositeoption, -geometry gives the dimensions of the im-
age and its location with respect to the composite image. If the-gravity option
is present withNorthEast, East,or SouthEastgravity, thex represents the dis-
tance from the right edge of the image to the right edge of the composite image.
Similarly, if the -gravity option is present withSouthWest, South,or SouthEast
gravity,y is measured between the bottom edges. Accordingly, a positive offset
will never point in the direction outside of the image. The offsets are not affected
by “%”; they are always measured in pixels. To specify the dimensions of the
composite image, use the-resizeoption.

When used as aconvert, import or mogrify option, -geometry is synonymous
with -resizeand specifies the size of the output image. The offsets, if present,
are ignored.

When used as amontageoption,-geometryspecifies the image size and border
size for each tile; default is 256x256+0+0. Negative offsets (border dimensions)
are meaningless. The-gravity option affects the placement of the image within
the tile; the default gravity for this purpose isCenter. If the “%” sign appears in
the geometry specification, the tile size is the specified percentage of the original
dimensions of the first tile. To specify the dimensions of the montage, use the
-resizeoption.

-gravity <type > direction primitive gravitates to when annotating the image.

Choices are: NorthWest, North, NorthEast, West, Center, East, SouthWest, South,
SouthEast.

The direction you choose specifies where to position the text when annotating
the image. For exampleCentergravity forces the text to be centered within the
image. By default, the image gravity isNorthWest. See-draw for more details
about graphic primitives. Only the text primitive is affected by the-gravity op-
tion.

The-gravity option is also used in concert with the-geometryoption and other
options that take<geometry> as a parameter, such as the-crop option. See
-geometry for details of how the-gravity option interacts with the<x> and
<y> parameters of a geometry specification.

When used as an option tocomposite, -gravity gives the direction that the image
gravitates within the composite.

60 ImageMagick

When used as an option tomontage, -gravity gives the direction that an image
gravitates within a tile. The default gravity isCenterfor this purpose.

-green-primary <x>,<y> green chromaticity primary point

-help print usage instructions

-iconGeometry <geometry > specify the icon geometry

Offsets, if present in the geometry specification, are handled in the same manner
as the-geometryoption, using X11 style to handle negative offsets.

-iconic iconic animation

-immutable make image immutable

-implode <factor > implode image pixels about the center

-intent <type > use this type of rendering intent when managing the image color

Use this option to affect the the color management operation of an image (see
-profile). Choose from these intents:Absolute, Perceptual, Relative, Satura-
tion

The default intent is undefined.

-interlace <type > the type of interlacing scheme

Choices are:None, Line, Plane,or Partition . The default isNone.

This option is used to specify the type of interlacing scheme for raw image for-
mats such asRGB or YUV .

Nonemeans do not interlace (RGBRGBRGBRGBRGBRGB...),

Line uses scanline interlacing (RRR...GGG...BBB...RRR...GGG...BBB...), and

Planeuses plane interlacing (RRRRRR...GGGGGG...BBBBBB...).

Partition is like plane except the different planes are saved to individual files
(e.g. image.R, image.G, and image.B).

UseLine or Plane to create aninterlaced PNG or GIF or progressive JPEG
image.

19 Commandline Options 61

-label <name> assign a label to an image

Use this option to assign a specific label to the image, when writing to an image
format that supports labels, such as TIFF, PNG, MIFF, or PostScript. You can
include the the image filename, type, width, height, or other image attribute by
embedding special format character. A label is not drawn on the image, but is
embedded in the image datastream via a “Label” tag or similar mechanism. If
you want the label to be visible on the image itself, use the-draw option. See
-commentfor details.

For example,

-label "%m:%f %wx%h"

produces an image label ofMIFF:bird.miff 512x480 for an image titledbird.miff
and whose width is 512 and height is 480.

If the first character ofstring is @, the image label is read from a file titled by
the remaining characters in the string.

When converting toPostScript, use this option to specify a header string to print
above the image. Specify the label font with-font.

When creating a montage, by default the label associated with an image is dis-
played with the corresponding tile in the montage. Use the+label option to
suppress this behavior.

-lat <width >x<height >{+-}<offset >{%} perform local adaptive threshold-
ing

Perform local adaptive thresholding using the specified width, height, and offset.
The offset is a distance in sample space from the mean, as an absolute integer
ranging from 0 to the maximum sample value or as a percentage.

-level <black point >{,<white point >}{%}{,<gamma >} adjust the level of
image contrast

Give one, two or three values delimited with commas: black, white, and gamma
(e.g. 10,65000,1.0 or 2%,98%,0.5). The black and white points range from 0 to
MaxRGB or from 0 to 100%; if the white point is omitted it is set to MaxRGB-
black point. If a “%” sign is present anywhere in the string, the black and white
points are percentages of MaxRGB. Gamma is an exponent that ranges from 0.1
to 10.; if it is omitted, the default of 1.0 (no gamma correction) is assumed.

-limit <type > <value > Area, Disk, Map, or Memory resource limit

The value for Area is in number of Megabytes and the values for the other re-
sources are in Megabytes. By default the limits are 64 Megabytes area, 512MB

62 ImageMagick

memory, 1024MB map, and unlimited disk, but these are adjusted at startup time
on platforms that can provide information about available resources. When the
limit is reached, ImageMagick will fail in some fashion, or take compensating
actions if possible. For example,-limit memory 32 -limit map 64
limits memory When the pixel cache reaches the memory limit it uses memory
mapping. When that limit is reached it goes to disk. If disk has a hard limit, the
program will fail.

You can use the option-list resource to find out the limits. This will also
show the number of files available, which is not changeable via the -limit option.

-linewidth the line width for subsequent draw operations

-list <type > the type of list

Choices are:Delegate, Format, Magic, Module, Resource, or Type.

This option lists information about the ImageMagick configuration.

-log <string > This option specifies the format for the log printed when the-debug
option is active.

You can display the following components by embedding special format char-
acters:

%d domain
%e event
%f function
%l line
%m module
%p process ID
%r real CPU time
%t wall clock time
%u user CPU time
%% percent sign
\n newline
\r carriage return

For example:

convert -debug coders -log "%u %m:%l %e" in.gif out.png

The default behavior is to print all of the components.

-loop <iterations > add Netscape loop extension to your GIF animation

19 Commandline Options 63

A value other than zero forces the animation to repeat itself up toiterations
times.

-magnify <factor > magnify the image

-map <filename > choose a particular set of colors from this image

[convertor mogrify]

By default, color reduction chooses an optimal set of colors that best represent
the original image. Alternatively, you can choose a particular set of colors from
an image file with this option.

Use+map to reduce all images in the image sequence that follows to a single
optimal set of colors that best represent all the images. The sequence of images
is terminated by the appearance of any option. If the+map option appears after
all of the input images, all images are mapped.

-map <type > display image using this type.

[animateor display]

Choose from theseStandard Colormaptypes:

best
default
gray
red
green
blue

The X servermust support theStandard Colormapyou choose, otherwise an
error occurs. Uselist as the type anddisplay searches the list of colormap types
in top-to-bottom order until one is located. Seexstdcmap(1)for one way of
creating Standard Colormaps.

-mask <filename > Specify a clipping mask

The image read from the file is used as a clipping mask. It must have the same
dimensions as the image being masked.

If the mask image contains an alpha channel, the opacity of each pixel is used to
define the mask. Otherwise, the intensity (gray level) of each pixel is used.

Use+mask to remove the clipping mask.

It is not necessary to use-clip to activate the mask;-clip is implied by-mask.

64 ImageMagick

-matte store matte channel if the image has one

If the image does not have a matte channel, create an opaque one.

Use+matte to ignore the matte channel and to avoid writing a matte channel in
the output file.

-mattecolor <color > specify the color to be used with the-frame option

The color is specified using the format described under the-fill option.

-median <radius > apply a median filter to the image

-mode <value > mode of operation

-modulate <value > vary the brightness, saturation, and hue of an image

Specify the percent change in brightness, the color saturation, and the hue sepa-
rated by commas. For example, to increase the color brightness by 20% and de-
crease the color saturation by 10% and leave the hue unchanged, use:-modulate
120,90.

-monochrome transform the image to black and white

-morph <frames > morphs an image sequence

Both the image pixels and size are linearly interpolated to give the appearance
of a meta-morphosis from one image to the next.

The sequence of images is terminated by the appearance of any option. If the
-morph option appears after all of the input images, all images are morphed.

-mosaic create a mosaic from an image or an image sequence

The -pageoption can be used to establish the dimensions of the mosaic and to
locate the images within the mosaic.

The sequence of images is terminated by the appearance of any option. If the
-mosaicoption appears after all of the input images, all images are included in
the mosaic.

-name name an image

19 Commandline Options 65

-negate replace every pixel with its complementary color

The red, green, and blue intensities of an image are negated. White becomes
black, yellow becomes blue, etc. Use+negateto only negate the grayscale pixels
of the image.

-noise <radius |type > add or reduce noise in an image

The principal function of noise peak elimination filter is to smooth the objects
within an image without losing edge information and without creating undesired
structures. The central idea of the algorithm is to replace a pixel with its next
neighbor in value within a pixel window, if this pixel has been found to be noise.
A pixel is defined as noise if and only if this pixel is a maximum or minimum
within the pixel window.

Useradius to specify the width of the neighborhood.

Use +noise followed by a noise type to add noise to an image. Choose from
these noise types:

Uniform
Gaussian
Multiplicative
Impulse
Laplacian
Poisson

-noop NOOP (no option)

The-noopoption can be used to terminate a group of images and reset all options
to their default values, when no other option is desired.

-normalize transform image to span the full range of color values

This is a contrast enhancement technique.

-opaque <color > change this color to the pen color within the image

The color is specified using the format described under the-fill option.

See-fill for more details.

-page <width >x<height >{+-}<x>{+-}<y>{%}{!}{<}{>} size and loca-
tion of an image canvas

Use this option to specify the dimensions of thePostScriptpage in dots per inch
or a TEXT page in pixels. The choices for a PostScript page are:

66 ImageMagick

11x17 792 1224
Ledger 1224 792
Legal 612 1008
Letter 612 792
LetterSmall 612 792
ArchE 2592 3456
ArchD 1728 2592
ArchC 1296 1728
ArchB 864 1296
ArchA 648 864
A0 2380 3368
A1 1684 2380
A2 1190 1684
A3 842 1190
A4 595 842
A4Small 595 842
A5 421 595
A6 297 421
A7 210 297
A8 148 210
A9 105 148
A10 74 105
B0 2836 4008
B1 2004 2836
B2 1418 2004
B3 1002 1418
B4 709 1002
B5 501 709
C0 2600 3677
C1 1837 2600
C2 1298 1837
C3 918 1298
C4 649 918
C5 459 649
C6 323 459
Flsa 612 936
Flse 612 936
HalfLetter 396 612

For convenience you can specify the page size by media (e.g. A4, Ledger, etc.).
Otherwise,-pagebehaves much like-geometry(e.g.-page letter+43+43 >).

This option is also used to place subimages when writing to a multi-image format
that supports offsets, such as GIF89 and MNG. When used for this purpose the
offsets are always measured from the top left corner of the canvas and are not
affected by the-gravity option. To position a GIF or MNG image, use-page{+-
}<x>{+-}<y> (e.g. -page +100+200). When writing to a MNG file, a-page

19 Commandline Options 67

option appearing ahead of the first image in the sequence with nonzero width
and height defines the width and height values that are written in theMHDR
chunk. Otherwise, the MNG width and height are computed from the bounding
box that contains all images in the sequence. When writing a GIF89 file, only
the bounding box method is used to determine its dimensions.

For a PostScript page, the image is sized as in-geometryand positioned relative
to the lower left hand corner of the page by{+-}<xoffset>{+-}<y offset>.
Use-page 612x792 >, for example, to center the image within the page. If
the image size exceeds the PostScript page, it is reduced to fit the page. The
default gravity for the-pageoption isNorthWest, i.e., positivex andy offsetare
measured rightward and downward from the top left corner of the page, unless
the-gravity option is present with a value other thanNorthWest.

The default page dimensions for a TEXT image is 612x792.

This option is used in concert with-density.

Use+pageto remove the page settings for an image.

-paint <radius > simulate an oil painting

Each pixel is replaced by the most frequent color in a circular neighborhood
whose width is specified withradius.

-pause <seconds > pause between animation loops [animate]

Pause for the specified number of seconds before repeating the animation.

-pause <seconds > pause between snapshots [import]

Pause for the specified number of seconds before taking the next snapshot.

-pen <color > (This option has been replaced by the -fill option)

-ping efficiently determine image characteristics

-pointsize <value > pointsize of the PostScript, OPTION1, or TrueType font

-preview <type > image preview type

Use this option to affect the preview operation of an image (e.g.convert
file.png -preview Gamma Preview:gamma.png). Choose from these
previews:

68 ImageMagick

Rotate
Shear
Roll
Hue
Saturation
Brightness
Gamma
Spiff
Dull
Grayscale
Quantize
Despeckle
ReduceNoise
Add Noise
Sharpen
Blur
Threshold
EdgeDetect
Spread
Shade
Raise
Segment
Solarize
Swirl
Implode
Wave
OilPaint
CharcoalDrawing
JPEG

The default preview isJPEG.

-process <command > process a sequence of images using a process module

The command argument has the formmodule=arg1,arg2,arg3,...,argN
wheremodule ¿ is the name of the module to invoke (e.g. ”analyze”) and arg1,arg2,arg3,...,argN
are an arbitrary number of arguments to pass to the process module.

The sequence of images is terminated by the appearance of any option.

If the -processoption appears after all of the input images, all images are pro-
cessed.

-profile <filename > add ICM, IPTC, or generic profile to image

-profile filename adds an ICM (ICC color management), IPTC (newswire
information), or a generic profile to the image.

19 Commandline Options 69

Use +profile icm , +profile iptc , or +profile profile name
to remove the respective profile. Useidentify -verbose to find out what
profiles are in the image file. Use+profile "*" to remove all profiles.

To extract a profile, the-profile option is not used. Instead, simply write the file
to an image format such asAPP1, 8BIM, ICM,or IPTC.

For example, to extract the Exif data (which is stored in JPEG files in theAPP1
profile), use

convert cockatoo.jpg exifdata.app1

-quality <value > JPEG/MIFF/PNG compression level

For the JPEG and MPEG image formats, quality is 0 (lowest image quality and
highest compression) to 100 (best quality but least effective compression). The
default quality is 75. Use the-sampling-factor option to specify the factors for
chroma downsampling.

For the MIFF image format, quality/10 is the zlib compression level, which is
0 (worst but fastest compression) to 9 (best but slowest). It has no effect on the
image appearance, since the compression is always lossless.

For the MNG and PNG image formats, the quality value sets the zlib compres-
sion level (quality / 10) and filter-type (quality % 10). Compression levels range
from 0 (fastest compression) to 100 (best but slowest). For compression level 0,
the Huffman-only strategy is used, which is fastest but not necessarily the worst
compression.

If filter-type is 4 or less, the specified filter-type is used for all scanlines:

0: none
1: sub
2: up
3: average
4: Paeth

If filter-type is 5, adaptive filtering is used when quality is greater than 50 and
the image does not have a color map, otherwise no filtering is used.

If filter-type is 6, adaptive filtering withminimum-sum-of-absolute-valuesis
used.

Only if the output is MNG, if filter-type is 7, the LOCO color transformation
and adaptive filtering withminimum-sum-of-absolute-valuesare used.

The default is quality is 75, which means nearly the best compression with adap-
tive filtering. The quality setting has no effect on the appearance of PNG and
MNG images, since the compression is always lossless.

For further information, see the PNG specification.

70 ImageMagick

When writing a JNG image with transparency, two quality values are required,
one for the main image and one for the grayscale image that conveys the alpha
channel. These are written as a single integer equal to the main image quality
plus 1000 times the opacity quality. For example, if you want to use quality 75
for the main image and quality 90 to compress the opacity data, use-quality
90075 .

-raise <width >x<height > lighten or darken image edges

This will create a 3-D effect. See-geometry for details details about the geom-
etry specification. Offsets are not used.

Use-raise to create a raised effect, otherwise use+raise.

-red-primary <x>,<y> red chromaticity primary point

-region <width >x<height >{+-}<x>{+-}<y> apply options to a portion of
the image

Thex andy offsets are treated in the same manner as in-crop.

-remote perform a remote operation

The only command recognized at this time is the name of an image file to load.

-render render vector operations

Use+render to turn off rendering vector operations.

-resize <width >x<height >{%}{@}{!}{<}{>} resize an image

This is an alias for the-geometryoption and it behaves in the same manner. If
the-filter option precedes the-resizeoption, the specified filter is used.

There are some exceptions:

When used as acompositeoption,-resizeconveys the preferred size of the output
image, while-geometryconveys the size and placement of thecomposite image
within the main image.

When used as amontageoption,-resizeconveys the preferred size of the mon-
tage, while-geometryconveys information about the tiles.

-roll {+-}<x>{+-}<y> roll an image vertically or horizontally

See-geometryfor details the geometry specification. Thex andy offsets are not
affected by the-gravity option.

19 Commandline Options 71

A negativex offset rolls the image left-to-right. A negativey offset rolls the
image top-to-bottom.

-rotate <degrees >{<}{>} apply Paeth image rotation to the image

Use> to rotate the image only if its width exceeds the height.< rotates the im-
ageonly if its width is less than the height. For example, if you specify-rotate
"-90 >" and the image size is 480x640, the image is not rotated. However, if
the image is 640x480, it is rotated by -90 degrees. If you use> or <, enclose it
in quotation marks to prevent it from being misinterpreted as a file redirection.

Empty triangles left over from rotating the image are filled with the color de-
fined asbackground (classbackgroundColor). The color is specified using the
format described under the-fill option.

-sample <geometry > scale image with pixel sampling

See-geometryfor details about the geometry specification.-sampleignores the
-filter selection if the-filter option is present. Offsets, if present in the geometry
string, are ignored, and the-gravity option has no effect.

-sampling-factor <horizontal factor >x<vertical factor > sampling factors
used by JPEG or MPEG-2 encoder and YUV decoder/encoder.

This option specifies the sampling factors to be used by the JPEG encoder for
chroma downsampling. If this option is omitted, the JPEG library will use its
own default values. When reading or writing the YUV format and when writ-
ing the M2V (MPEG-2) format, use-sampling-factor 2x1 to specify the 4:2:2
downsampling method.

-scale <geometry > scale the image.

See-geometry for details about the geometry specification.-scaleuses a sim-
pler, faster algorithm, and it ignores the-filter selection if the-filter option is
present. Offsets, if present in the geometry string, are ignored, and the-gravity
option has no effect.

-scene <value > set scene number

This option sets the scene number of an image or the first image in an image
sequence.

-scenes <value-value > range of image scene numbers to read

Each image in the range is read with the filename followed by a period (.) and
the decimal scene number. You can change this behavior by embedding a%d,

72 ImageMagick

%0Nd, %o, %0No, %x, or %0Nx printf format specification in the file name.
For example,

montage -scenes 5-7 image.miff

makes a montage of files image.miff.5, image.miff.6, and image.miff.7, and

animate -scenes 0-12 image%02d.miff

animates files image00.miff, image01.miff, through image12.miff.

-screen specify the screen to capture

This option indicates that the GetImage request used to obtain the image should
be done on the root window, rather than directly on the specified window. In this
way, you can obtain pieces of other windows that overlap the specified window,
and more importantly, you can capture menus or other popups that are indepen-
dent windows but appear over the specified window.

-seed <value > pseudo-random number generator seed value

The value can be any integer in the range 1 to 2**31-1. Successive runs with
a particular seed will generate the same sequence of pseudo-random numbers.
If the -seedoption is not present, ImageMagick will generate a random seed
from system timers, clocks, etc., so that successive runs will generate different
sequences. The pseudo-random numbers are used by options such as-noise, -
spread, and theplasmaformat.

-segment <cluster threshold >x<smoothing threshold > segment an im-
age

Segment an image by analyzing the histograms of the color components and
identifying units that are homogeneous with the fuzzy c-means technique.

Specifycluster thresholdas the number of pixels in each cluster must exceed
the the cluster threshold to be considered valid.Smoothing thresholdeliminates
noise in the second derivative of the histogram. As the value is increased, you
can expect a smoother second derivative. The default is 1.5. See “Image Seg-
mentation” in the manual page fordisplayfor details.

-shade <azimuth >x<elevation > shade the image using a distant light source

Specifyazimuthandelevationas the position of the light source. Use+shadeto
return the shading results as a grayscale image.

-shadow shadow the montage

19 Commandline Options 73

-shared-memory use shared memory

This option specifies whether the utility should attempt use shared memory for
pixmaps. ImageMagick must be compiled with shared memory support, and the
display must support theMIT-SHMextension. Otherwise, this option is ignored.
The default isTrue.

-sharpen <radius >{x<sigma >} sharpen the image

Use a Gaussian operator of the given radius and standard deviation (sigma).

-shave <width >x<height >{%} shave pixels from the image edges

Specify the width of the region to be removed from both sides of the image and
the height of the regions to be removed from top and bottom.

-shear <x degrees >x<y degrees > shear the image along the X or Y axis

Use the specified positive or negative shear angle.

Shearing slides one edge of an image along the X or Y axis, creating a parallelo-
gram. An X direction shear slides an edge along the X axis, while a Y direction
shear slides an edge along the Y axis. The amount of the shear is controlled by a
shear angle. For X direction shears,x degreesis measured relative to the Y axis,
and similarly, for Y direction shearsy degreesis measured relative to the X axis.

Empty triangles left over from shearing the image are filled with the color de-
fined asbackground (classbackgroundColor). The color is specified using the
format described under the-fill option.

-silent operate silently

-size <width >x<height >{+offset } width and height of the image

Use this option to specify the width and height of raw images whose dimensions
are unknown such asGRAY , RGB, or CMYK . In addition to width and height,
use-sizewith an offset to skip any header information in the image or tell the
number of colors in aMAP image file, (e.g. -size 640x512+256).

For Photo CD images, choose from these sizes:

192x128
384x256
768x512
1536x1024
3072x2048

74 ImageMagick

Finally, use this option to choose a particular resolution layer of a JBIG or JPEG
image (e.g. -size 1024x768).

-snaps <value > number of screen snapshots

Use this option to grab more than one image from the X server screen, to create
an animation sequence.

-solarize <factor > negate all pixels above the threshold level

Specifyfactor as the percent threshold of the intensity (0 - 99.9%).

This option produces asolarizationeffect seen when exposing a photographic
film to light during the development process.

-spread <amount > displace image pixels by a random amount

Amountdefines the size of the neighborhood around each pixel to choose a can-
didate pixel to swap.

-stegano <offset > hide watermark within an image

Use an offset to start the image hiding some number of pixels from the be-
ginning of the image. Note this offset and the image size. You will need this
information to recover the steganographic image (e.g. display -size 320x256+35
stegano:image.png).

-stereo composite two images to create a stereo anaglyph

The left side of the stereo pair is saved as the red channel of the output im-
age. The right side is saved as the green channel. Red-green stereo glasses are
required to properly view the stereo image.

-stroke <color > color to use when stroking a graphic primitive

The color is specified using the format described under the-fill option.

See-draw for further details.

-strokewidth <value > set the stroke width

See-draw for further details.

-swap <index,index > swap two images in the image sequence.

19 Commandline Options 75

-swirl <degrees > swirl image pixels about the center

Degreesdefines the tightness of the swirl.

-text-font <name> font for writing fixed-width text

Specifies the name of the preferred font to use in fixed (typewriter style) format-
ted text. The default is 14 pointCourier.

You can tag a font to specify whether it is a PostScript, TrueType, or OPTION1
font. For example,Courier.ttf is a TrueType font andx:fixed is OP-
TION1.

-texture <filename > name of texture to tile onto the image background

-threshold <value >{<green >,<blue >,<opacity >}{%} threshold the im-
age

Create an image such that any pixel sample that is equal or exceeds the threshold
is reassigned the maximum intensity otherwise the minimum intensity.

If the green or blue value is omitted, these channels use the same value as the
first one provided. If all three color values are the same, the result is a bi-level
image. If the opacity threshold is omitted, OpaqueOpacity will be used and any
partially transparent pixel will become fully transparent. If only a single 0 is
provided, auto-thresholding will be performed.

To generate an all-black or all-white image with the same dimensions as the
input image, you can use

convert -threshold 100% in.png black.png
convert -threshold -1 in.png white.png

-tile <filename > tile image when filling a graphic primitive

-tile <geometry > layout of images [montage]

-title <string > assign title to displayed image [animate, display, montage]

Use this option to assign a specific title to the image. This is assigned to the
image window and is typically displayed in the window title bar. Optionally you
can include the image filename, type, width, height, Exif data, or other image
attribute by embedding special format characters described under the-format
option.

For example,

76 ImageMagick

-title "%m:%f %wx%h"

produces an image title ofMIFF:bird.miff 512x480 for an image titled
bird.miff and whose width is 512 and height is 480.

-swap <index,index > swap two images in the image sequence.

-transform transform the image

This option applies the transformation matrix from a previous-affine option.

convert -affine 2,2,-2,2,0,0 -transform bird.ppm bird.jpg

-transparent <color > make this color transparent within the image

The color is specified using the format described under the-fill option.

-treedepth <value > tree depth for the color reduction algorithm

Normally, this integer value is zero or one. A zero or one tells display to choose
an optimal tree depth for the color reduction algorithm

An optimal depth generally allows the best representation of the source image
with the fastest computational speed and the least amount of memory. However,
the default depth is inappropriate for some images. To assure the best represen-
tation, try values between 2 and 8 for this parameter. Refer to quantize for more
details.

The-colorsor -monochromeoption is required for this option to take effect.

-trim trim an image

This option removes any edges that are exactly the same color as the corner
pixels. Use-fuzz to make-trim remove edges that are nearly the same color as
the corner pixels.

-type <type > the image type

Choose from:Bilevel, Grayscale, Palette, PaletteMatte, TrueColor , TrueCol-
orMatte , ColorSeparation, ColorSeparationMatte, or Optimize.

Normally, when a format supports different subformats such as grayscale and
truecolor, the encoder will try to choose an efficient subformat. The-type option
can be used to overrride this behavior. For example, to prevent a JPEG from
being written in grayscale format even though only gray pixels are present, use

19 Commandline Options 77

convert bird.pgm -type TrueColor bird.jpg

Similarly, using-type TrueColorMatte will force the encoder to write an
alpha channel even though the image is opaque, if the output format supports
transparency.

-update <seconds > detect when image file is modified and redisplay.

Suppose that while you are displaying an image the file that is currently dis-
played is over-written.display will automatically detect that the input file has
been changed and update the displayed image accordingly.

-units <type > the type of image resolution

Choose from:Undefined, PixelsPerInch, or PixelsPerCentimeter.

-unsharp <radius >{x<sigma >}{+<amount >}{+<threshold >} sharpen
the image with an unsharp mask operator

The -unsharp option sharpens an image. We convolve the image with a Gaus-
sian operator of the given radius and standard deviation (sigma). For reasonable
results, radius should be larger than sigma. Use a radius of 0 to have the method
select a suitable radius.

The parameters are:

radius: The radius of the Gaussian, in pixels, not
counting the center pixel (default 0).

sigma: The standard deviation of the Gaussian, in
pixels (default 1.0).

amount: The percentage of the difference between the
original and the blur image that is added back
into the original (default 1.0).

threshold: The threshold, as a fraction of MaxRGB, needed
to apply the difference amount (default 0.05).

-use-pixmap use the pixmap

-verbose print detailed information about the image

This information is printed: image scene number; image name; image size; the
image class (DirectClassor PseudoClass); the total number of unique colors;
and the number of seconds to read and transform the image. Refer to miff for a
description of the image class.

If -colors is also specified, the total unique colors in the image and color reduc-
tion error values are printed. Refer to quantize for a description of these values.

78 ImageMagick

-version print ImageMagick version string

-view <string > FlashPix viewing parameters

-virtual-pixel <method > specify contents of “virtual pixels”

This option defines “virtual pixels” for use in operations that can access pixels
outside the boundaries of an image.

Choose from these methods:

Constant: Use the image background color.
Edge: Extend the edge pixel toward infinity (default).
Mirror: Mirror the image.
Tile: Tile the image.

This option affects operations that use virtual pixels such as-blur , -sharpen,
-wave, etc.

-visual <type > animate images using this X visual type

Choose from these visual classes:

StaticGray
GrayScale
StaticColor
PseudoColor
TrueColor
DirectColor
default
visual id

The X server must support the visual you choose, otherwise an error occurs. If
a visual is not specified, the visual class that can display the most simultaneous
colors on the default screen is chosen.

-watermark <brightness >x<saturation > percent brightness and saturation of
a watermark

-wave <amplitude >x<wavelength > alter an image along a sine wave

Specifyamplitudeandwavelengthof the wave.

19 Commandline Options 79

-white-point <x>,<y> chromaticity white point

-window <id> make image the background of a window

id can be a window id or name. Specifyroot to select X’s root window as the
target window.

By default the image is tiled onto the background of the target window. Ifback-
drop or -geometry are specified, the image is surrounded by the background
color. Refer toX RESOURCESfor details.

The image will not display on the root window if the image has more unique col-
ors than the target window colormap allows. Use-colors to reduce the number
of colors.

-window-group specify the window group

-write <filename > write an image sequence [convert, composite]

The image sequence following the-write filenameoption is written out, and then
processing continues with the same image in its current state if there are addi-
tional options. To restore the image to its original state after writing it, use the
+write filenameoption.

-write <filename > write the image to a file [display]

If filenamealready exists, you will be prompted as to whether it should be over-
written.

By default, the image is written in the format that it was read in as. To specify
a particular image format, prefixfilenamewith the image type and a colon (e.g.,
ps:image) or specify the image type as the filename suffix (e.g., image.ps). See
convert(1) for a list of valid image formats. Specify file as - for standard output.
If file has the extension.Z or .gz, the file size iscompressedusing compress
or gzip respectively. Precede the image file name with| to pipe to a system
command.

Use-compressto specify the type of image compression.

The equivalent X resource for this option iswriteFilename (classWriteFile-
name). See “X Resources” in the manual page fordisplayfor details.

20 API Structures and
Enumerations

20.1 API Structures

AffineMatrix The members of the AffineMatrix structure are shown in the following
table:

Table20.1: AffineMatrix Structure

AffineMatrix Structure

Member Type Description
sx doublex scale.
sy doubley scale.
rx doublex rotate.
ry doubley rotate.
tx doublex translate.
ty doubley translate.

ChromaticityInfo The members of the ChromaticityInfo structure are shown in the
following table. The structure can contain either (x,y) or, if Z is nonzero, CIE
(X,Y,Z) points.

80

20 API Structures and Enumerations 81

Table20.2: ChromaticityInfo Structure

ChromaticityInfo Structure

Member Type Description
red primary PrimaryInfox,y or X,Y,Z of red primary.
greenprimaryPrimaryInfox,y or X,Y,Z of green primary.
blue primary PrimaryInfox,y or X,Y,Z of blue primary.
white point PrimaryInfox,y or X,Y,Z of white point.

DrawInfo The DrawInfo structure is used to support annotating an image using draw-
ing commands.

The members of the DrawInfo structure are shown in the following table. The
structure is initialized to reasonable defaults by first initializing the equivalent
members of ImageInfo, and then initializing the entire structure using GetDraw-
Info().

Table20.3: DrawInfo Structure

DrawInfo Structure

Member Type Description
affine AffineMatrix Coordinate transformation (rotation, scal-

ing, and translation).
align AlignType Alignment type.
bordercolor PixelPacket Border color.
bounds SegmentInfo Bounds.
box PixelPacket Text solid background color.
compose CompositeOperatorComposite operator.
clip path char * Clipping path.
clip units ClipPathUnits Clipping path units.
dashoffset double Dash offset.
dashpattern double Dash pattern.
decorate DecorationType Text decoration type.
density char * Text rendering density in DPI (effects

scaling font according to pointsize). E.g.
“72x72”.

82 ImageMagick

DrawInfo Structure (continued)

Member Type Description
elementreferenceElementReferenceElement reference.
encoding char * Text encoding.
family char * Font family to use when rendering text.
fill PixelPacket Object internal fill (within outline) color.
fill pattern Image * Image to use as fill pattern.
fill rule FillRule Fill rule.
font char * Font to use when rendering text.
geometry char * Text scaling and location.
gradient GradientInfo Gradient information.
gravity GravityType Text placement preference (e.g. North-

WestGravity).
linecap LineCap Line cap style.
linejoin LineJoin Line joining style.
miterlimit unsigned long Miter limit.
opacity Quantum Opacity.
pointsize double Font size (also see density).
primitive char * Space or new-line delimited list of text

drawing primitives (e.g “text 100, 100
Cockatoo”). See the table Drawing Prim-
itives for the available drawing primitives.

render unsigned int Render flag.
servername char * Server name.
signature unsigned long Internal signature.
stretch StretchType Font stretch type.
stroke PixelPacket Object stroke (outline) color.
strokeantialias unsigned int Set to True (non-zero) to obtain anti-

aliased stroke rendering.
strokepattern Image * Image to use as stroke pattern.
strokewidth double Stroke (outline) drawing width in pixels.
style StyleType Font style.
text char * Text to use for annotation.
text antialias unsigned int Set to True (non-zero) to obtain anti-

aliased text rendering.
tile Image * Image texture to draw with. Use an image

containing a single color (e.g. a 1x1 image)
to draw in a solid color.

undercolor PixelPacket Under color.
weight unsigned long Font weight.

20 API Structures and Enumerations 83

ExceptionInfo The members of the ExceptionInfo structure are shown in the fol-
lowing table:

Table20.4: ExceptionInfo Structure

ExceptionInfo Structure

Member Type Description
description char * warning or error description.
error numberint system errno at time exception was thrown.
reason char * warning or error message.
severity ExceptionTypewarning or error severity.
signature unsigned longinternal signature.

FrameInfo The FrameInfo structure is used to represent dimensioning information
for image frames in ImageMagick.

The members of the FrameInfo structure are shown in the following table:

Table20.5: FrameInfo Structure

FrameInfo Structure

Member Type Description
width unsigned longwidth.
height unsigned longheight.
x long x.
y long y.
inner bevel long Inner bevel thickness.
outerbevel long Outer bevel thickness.

Image TheImagestructure represents an ImageMagick image. It is initially allocated
by AllocateImage() and deallocated by DestroyImage(). The functions Read-
Image(), ReadImages(), BlobToImage() and CreateImage() return a new image.
Use CloneImage() to copy an image. An image consists of a structure containing
image attributes as well as the image pixels.

84 ImageMagick

The image pixels are represented by the structure PixelPacket and are cached
in-memory, or on disk, depending on the cache threshold setting. This cache
is known as the “pixel cache”. Pixels in the cache may not be edited directly.
They must first be made visible from the cache via a pixel view. A pixel view
is a rectangular view of the pixels as defined by a starting coordinate, and a
number of rows and columns. When considering the varying abilities of multiple
platforms, the most reliably efficient pixel view is comprized of part, or all, of
one image row.

There are three means of accessing pixel views. When using the default view,
the pixels are made visible and accessable by using the AcquireImagePixels()
method which provides access to a specified region of the image. If you intend
to change any of the pixel values, use GetImagePixels(). After the view has been
updated, the pixels may be saved back to the cache in their original positions via
SyncImagePixels(). In order to create an image with new contents, or to blindly
overwrite existing contents, the method SetImagePixels() is used to reserve a
pixel view corresponding to a region in the pixel cache. Once the pixel view
has been updated, it may be written to the cache via SyncImagePixels(). The
function GetIndexes() provides access to the image colormap, represented as an
array of type IndexPacket.

A more flexible interface to the image pixels is via the CacheView interface.
This interface supports multiple pixel cache views (limited by the number of
image rows), each of which are identified by a handle (of type ViewInfo*). Use
OpenCacheView() to obtain a new cache view, CloseCacheView() to discard a
cache view, GetCacheView() to access an existing pixel region, SetCacheView()
to define a new pixel region, and SyncCacheView() to save the updated pixel
region. The function GetCacheViewIndexes() provides access to the colormap
indexes associated with the pixel view.

When writing encoders and decoders for new image formats, it is convenient
to have a high-level interface available which supports converting between ex-
ternal pixel representations and ImageMagick’s own representation. Pixel com-
ponents (red, green, blue, opacity, RGB, or RGBA) may be transferred from
a user-supplied buffer into the default view by using PushImagePixels(). Pixel
components may be transferred from the default view into a user-supplied buffer
by using PopImagePixels(). Use of this high-level interface helps protect image
coders from changes to ImageMagick’s pixel representation and simplifies the
implementation.

The members of the Image structure are shown in the following table:

20 API Structures and Enumerations 85

Table20.6: Image Structure

Image Structure

Member Type Description
attributes ImageAttribute * Image attribute list. Consists of a

doubly-linked-list of ImageAttribute
structures, each of which has an asso-
ciated key and value. Access/update
list via SetImageAttribute() and GetIm-
ageAttribute(). Key-strings used by
ImageMagick include “Comment”
(image comment), “Label” (image
label), and “Signature” (image signa-
ture). Key-strings used internally by
ImageMagick are enclosed in square
brackets.

backgroundcolor PixelPacket Image background color.
blob BlobInfo * A BlobInfo structure whose ”data”

member is a blob from which image
data is read or to which it is written.

blur double Blur factor to apply to the image when
zooming.

bordercolor PixelPacket Image border color.
cache void * Image cache.
chromaticity ChromaticityInfo Red, green, blue, and white-point chro-

maticity values.
client data void * Data used by the encoder or decoder.
clip mask Image * Image used as a clipping mask.
color profile ProfileInfo ICC color profile. Specifications are

available from the International Color
Consortium for the format of ICC color
profiles.

colormap PixelPacket PseudoColor palette array.
colors unsigned long The desired number of colors. Used by

QuantizeImage().
colorspace ColorspaceType Image pixel interpretation.If the col-

orspace is RGB the pixels are red, green,
blue. If matte is true, then red, green,
blue, and index. If it is CMYK, the pix-
els are cyan, yellow, magenta, black.
Otherwise the colorspace is ignored.

86 ImageMagick

Image Structure (continued)

Member Type Description
columns unsigned long Image width.
comments char * Image comments.
compose CompositeOperatorComposite operator.
compression CompressionType Image compression type. The default is

the compression type of the specified
image file.

delay unsigned long Time in 1/100ths of a second (0 to
65535) which must expire before dis-
playing the next image in an animated
sequence. This option is useful for reg-
ulating the animation of a sequence of
GIF images within Netscape.

depth unsigned long Image depth (8 or 16).
directory char * Tile names from within an image mon-

tage. Only valid after calling Mon-
tageImages() or reading a MIFF file
which contains a directory.

dispose unsigned long GIF disposal method. This option is
used to control how successive frames
are rendered (how the preceding frame
is disposed of) when creating a GIF an-
imation.

exception ExceptionInfo Record of any error which occurred
when updating image.

exempt unsigned int Specifies whether image’s file is exempt
from being closed by CloseBlob().

endian EndianType Specifies the endianness of the output
image.

filename char[MaxTextExtent]Image file name to read or write.
filesize long int Number of bytes of the encoded file.
filter FilterTypes Filter to use when resizing image. The

reduction filter employed has a signif-
icant effect on the time required to re-
size an image and the resulting quality.
The default filter is Lanczos which has
been shown to produce high quality re-
sults when reducing most images.

20 API Structures and Enumerations 87

Image Structure (continued)

Member Type Description
fuzz double Colors within this distance are consid-

ered equal. A number of algorithms
search for a target color. By default the
color must be exact. Use this option to
match colors that are close to the target
color in RGB space.

gamma double Gamma level of the image. The same
color image displayed on two differ-
ent workstations may look different due
to differences in the display monitor.
Use gamma correction to adjust for this
color difference.

genericprofiles unsigned long Number of generic profiles.
genericprofile ProfileInfo * List of generic profiles.
geometry char * Preferred size and location of the im-

age when encoding. Positive offsets are
measured downward and to the right of
the upper left corner. Negative offsets
are measured leftward or upward from
the right edge or bottom edge.

gravity GravityType Image gravity.
interlace InterlaceType The type of interlacing scheme (de-

fault NoInterlace). This option is used
to specify the type of interlacing
scheme for raw image formats such as
RGB or YUV. NoInterlace means do
not interlace, LineInterlace uses scan-
line interlacing, and PlaneInterlace uses
plane interlacing. PartitionInterlace is
like PlaneInterlace except the different
planes are saved to individual files (e.g.
image.R, image.G, and image.B). Use
LineInterlace or PlaneInterlace to create
an interlaced GIF or progressive JPEG
image.

iptc profile ProfileInfo IPTC profile. Specifications are avail-
able from the International Press
Telecommunications Council for IPTC
profiles.

iterations unsigned long Number of iterations to loop an anima-
tion (e.g. Netscape loop extension) for.

88 ImageMagick

Image Structure (continued)

Member Type Description
list Image * Undo image list (used only by ‘display’)
magick char[MaxTextExtent]Image encoding format (e.g. “GIF”).
magickcolumns unsigned long Base image width (before transforma-

tions)
magickfilename char[MaxTextExtent]Base image filename (before transfor-

mations)
magick rows unsigned long Base image height (before transforma-

tions)
matte unsigned int If non-zero, then the index member of

pixels represents the alpha channel.
mattecolor PixelPacket Image matte (transparent) color

meanerror double The mean error per pixel computed
per pixel when an image is color reduced. This

parameter is only valid ifverboseis set
to True and the image has just been
quantized.

montage char * Tile size and offset within an image
montage. Only valid for montage im-
ages.

next Image * Next image frame in sequence
normalized double The normalized max error per pixel
maximumerror computed when an image is color re-

duced. This parameter is only valid if
verboseis set to true and the image has
just been quantized.

normalized double The normalized mean error per pixel
meanerror computed when an image is color re-

duced. This parameter is only valid if
verboseis set toTrueand the image has
just been quantized.

offset long Number of initial bytes to skip over
when reading raw image.

orphan [Deprecated].
page RectangleInfo size of Postscript page and offsets. Off-

sets are measured from the upper left
corner of the page, regardless of their
sign.

20 API Structures and Enumerations 89

Image Structure (continued)

Member Type Description
pipet unsigned int Set to True if image is read/written

from/to a POSIX pipe. To read from (or
write to) an open pipe, set this mem-
ber to True, set the file member to a
stdio stream representing the pipe (ob-
tained from popen()), and invoke Read-
Image(), WriteImage(). The pipe is au-
tomatically closed via pclose() when the
operation completes.

pixels PixelPacket Image pixels retrieved via GetPixel-
Cache() or initialized via SetPixel-
Cache().

previous Image * Previous image frame in sequence.
referencecount long Reference count.
renderingintent RenderingIntent The type of rendering intent.
rows unsigned long Image height.
scene unsigned long Image frame scene number.
semaphore SemaphoreInfo Semaphore.
signature unsigned long Internal signature used for checking in-

tegrity. Note: this is different from the
SHA signature reported by “identify”.

start loop ClassType Marks first image to be displayed in a
loop.

status unsigned int Return code.
storageclass ClassType Image storage class. If DirectClass then

the image packets contain valid RGB
or CMYK colors. If PseudoClass then
the image has a colormap referenced by
pixel’s index member.

taint int Set to non-zero (True) if the image pix-
els have been modified.

temporary unsigned int True if image is temporary?.
tile info RectangleInfo Describes a tile within an image. For ex-

ample, if your images is 640x480 you
may only want 320x256 with an offset
of +128+64. It is used for raw formats
such as RGB and CMYK as well as for
TIFF.

timer TimerInfo Support for measuring actual (user +
system) and elapsed execution time.

90 ImageMagick

Image Structure (continued)

Member Type Description
total colors unsigned long The number of colors in the image after

QuantizeImage(), or QuantizeImages()
if the verbose flag was set before the
call. Calculated by GetNumberColors().

units ResolutionType Units of image resolution
x resolution double Horizontal resolution of the image.
y resolution double Vertical resolution of the image

ImageAttribute The ImageAttribute structure is used to add arbitary textual at-
tributes to an image. Each attribute has an associated key and value. Add new
attributes, or update an existing attribute, via SetImageAttribute() and obtain the
value of an existing attribute via GetImageAttribute(). Key-strings used by Im-
ageMagick include “Comment” (image comment), “Label” (image label), and
“Signature” (image signature).

The members of the ImageAttribute structure are shown in the following table:

Table20.7: ImageAttribute Structure

ImageAttribute Structure

Member Type Description
key char * key.
value char * value.
compressionunsigned int compression.
next ImageAttribute *next attribute in list.
previous ImageAttribute *previous attribute in list.

ImageInfo TheImageInfostructure is used to supply option information to the meth-
ods AllocateImage(), AnimateImages(), BlobToImage(), CloneAnnotateInfo(),
DisplayImages(), GetAnnotateInfo(), ImageToBlob(), PingImage(), ReadImage(),
ReadImages(), and WriteImage(). These methods update information in Image-
Info to reflect attributes of the current image.

Use CloneImageInfo() to duplicate an existing ImageInfo structure or allocate a
new one. Use DestroyImageInfo() to deallocate memory associated with an Im-
ageInfo structure. Use GetImageInfo() to initialize an existing ImageInfo struc-

20 API Structures and Enumerations 91

ture. Use SetImageInfo() to set image type information in the ImageInfo struc-
ture based on an existing image.

The members of the ImageInfo structure are shown in the following table:

Table20.8: ImageInfo Structure

ImageInfo Structure

Member Type Description
adjoin unsigned int Join images into a single multi-image file.
affirm unsigned int Affirm flag.
antialias unsigned int Control antialiasing of rendered graphic

primitives and text fonts.
attributes Image * Image attributes.
authenticate char * Password for encrypted input images.
backgroundcolor PixelPacket Image background color.
blob void * A blob containing an image datastream.
bordercolor PixelPacket Image border color.
box char * Base color that annotation text is ren-

dered on.
cache void * Cache.
client data void * Client data.
colorspace ColorspaceType Image pixel interpretation. If the col-

orspace is RGB the pixels are red, green,
blue. If matte is true, then red, green,
blue, and index. If it is CMYK, the pixels
are cyan, yellow, magenta, black. Other-
wise the colorspace is ignored.

compression CompressionType Image compression type. The default is
the compression type of the specified im-
age file.

density char * Vertical and horizontal resolution in pix-
els of the image. This option speci-
fies an image density when decoding a
Postscript or Portable Document page.
Often used with page.

depth unsigned long Image depth (8 or 16).

92 ImageMagick

ImageInfo Structure (continued)

Member Type Description
dither unsigned int Apply Floyd/Steinberg error diffusion to

the image. The basic strategy of dithering
is to trade intensity resolution for spatial
resolution by averaging the intensities of
several neighboring pixels. Images which
suffer from severe contouring when re-
ducing colors can be improved with this
option. The colors or monochrome option
must be set for this option to take effect.

endian EndianType Specify the endianness of the output im-
age.

file FILE * Stdio stream to read image from or write
image to. If set, ImageMagick will read
from or write to the stream rather than
opening a file. Used by ReadImage() and
WriteImage(). The stream is closed when
the operation completes.

filename char[MaxTextExtent]Image file name to read or write.
font char * Text rendering font. If the font is a fully

qualified X server font name, the font
is obtained from an X server. To use a
TrueType font, precede the TrueType file-
name with an @. Otherwise, specify a
Postscript font name (e.g. “helvetica”).

fuzz double Colors within this distance are considered
equal. A number of algorithms search for
a target color. By default the color must
be exact. Use this option to match colors
that are close to the target color in RGB
space.

group long Group number.

20 API Structures and Enumerations 93

ImageInfo Structure (continued)

Member Type Description
interlace InterlaceType The type of interlacing scheme (default

NoInterlace). This option is used to spec-
ify the type of interlacing scheme for
raw image formats such as RGB or
YUV. NoInterlace means do not inter-
lace, LineInterlace uses scanline interlac-
ing, and PlaneInterlace uses plane inter-
lacing. PartitionInterlace is like PlaneIn-
terlace except the different planes are
saved to individual files (e.g. image.R,
image.G, and image.B). Use LineInter-
lace or PlaneInterlace to create an inter-
laced GIF or progressive JPEG image.

length sizet Length of the ImageInfo blob.
magick char[MaxTextExtent]Image encoding format (e.g. “GIF”).
mattecolor PixelPacket Image matte (transparent) color.
monochrome unsigned int Transform the image to black and white.
page char * Equivalent size of Postscript page.
pen PixelPacket Pen color.
ping unsigned int Set to True to read enough of the image to

determine the image columns, rows, and
filesize. The columns, rows, and size at-
tributes are valid after invoking ReadIm-
age() while ping is set. The image data
is not valid after calling ReadImage() if
ping is set.

pointsize double Text rendering font point size.
preview type PreviewType Image manipulation preview option.

Used by ‘display’.
quality unsigned long JPEG/MIFF/MNG/PNG compression

level (default 75).
samplingfactor char * Sampling factor for the chroma channels

in JPEG, MPEG-2, or YUV datastreams.
servername char * X11 display to display to obtain fonts

from, or to capture image from.
signature unsigned long Signature used internally by ImageMag-

ick to determine integrity of the im-
ageinfo structure.

94 ImageMagick

ImageInfo Structure (continued)

Member Type Description
size char * Width and height of a raw image (an im-

age which does not support width and
height information). Size may also be
used to affect the image size read from
a multi-resolution format (e.g. Photo CD,
JBIG, or JPEG.

stream StreamHandler Stream handler.
subimage unsigned long Subimage of an image sequence.
subrange unsigned long Number of images relative to the base im-

age.
temporary unsigned int Temporary flag.
texture char * Image filename to use as background tex-

ture.
tile char * Tile name.
type ImageType Image type.
unique char[MaxTextExtent]Unique string.
units ResolutionType Units of image resolution.
verbose unsigned int Print detailed information about the im-

age if True.
view char * FlashPix viewing parameters.
zero char[MaxTextExtent]Zero byte string.

MagickInfo The MagickInfo structure is used by ImageMagick to register support
for an Image format. The MagickInfo structure is allocated with default param-
eters by calling SetMagickInfo(). Image formats are registered by calling Regis-
terMagickInfo() which adds the initial structure to a linked list (at which point it
is owned by the list). A pointer to the structure describing a format may be ob-
tained by calling GetMagickInfo(). Pass the argument NULL to obtain the first
member of this list. A human-readable list of registered image formats may be
printed to a file descriptor by calling ListMagickInfo().

Support for formats may be provided as a module which is part of the Im-
ageMagick library, provided by a module which is loaded dynamically at run-
time, or directly by the linked program. Users of ImageMagick will normally
want to create a loadable-module, or support encode/decode of an image format
directly from within their program.

20 API Structures and Enumerations 95

Table20.9: MagickInfo Structure

MagickInfo Structure

Member Type Description
adjoin unsigned int Set to non-zero (True) if this file format supports

multi-frame images.
blob support unsigned int Set to non-zero (True) if the encoder and de-

coder for this format supports operating arbitrary
BLOBs (rather than only disk files).

client data void * User specified data. A way to pass any sort of
data structure to the endoder/decoder. To set this,
GetMagickInfo() must be called to first obtain a
pointer to the registered structure since it can not
be set via a RegisterMagickInfo() parameter.

decoder Image * (*decoder)(const ImageInfo *)
Pointer to a function to decode image data and re-
turn ImageMagick Image.

description const char * Long form image format description (e.g. “Com-
puServe graphics interchange format”).

encoder unsigned int (*encoder)(const ImageInfo, Image *)
Pointer to a function to encode image data with
options passed via ImageInfo and image repre-
sented by Image.

magick const char * (const unsigned char *,const sizet)
Pointer to a function that returnsTrue if it recog-
nizes this format in the supplied string, otherwise
False.

module const char * Name of module (e.g. “GIF”) which registered
this format. Set to NULL if format is not regis-
tered by a module.

name const char * Name (e.g. “GIF”) of this format.
next MagickInfo Next MagickInfo struct in linked-list. NULL if

none.
previous MagickInfo Previous MagickInfo struct in linked-list. NULL

if none.
raw unsigned int Image format does not contain size (must be spec-

ified in ImageInfo)
signature unsigned longSignature (0xabacadab) used internally by Im-

ageMagick to determine integrity of the image
structure.

stealth unsigned int Image format does not get listed.

96 ImageMagick

MagickInfo Structure (continued)

Member Type Description
threadsupportunsigned int Set to non-zero (True) if the encoder and decoder

are thread safe.
version const char * Version of the module used to process this image

format.

MontageInfo Montage info.

Table20.10: MontageInfo Structure

MontageInfo Structure

Member Type Description
backgroundcolor PixelPacket background color.
bordercolor PixelPacket border color.
borderwidth unsigned longborder width.
filename[MaxTextExtent]char filename.
fill PixelPacket fill color.
frame char * geometry of frame.
font char * font.
geometry char * geometry of each tile.
gravity GravityType gravity of tiles.
mattecolor PixelPacket matte color.
pointsize double point size for text.
shadow unsigned int shadow (Trueor False)
signature unsigned longinternal signature.
stroke PixelPacket stroke color for text.
texture char * texture.
tile char * geometry of tile layout.
title char * title.

PixelPacket The PixelPacket structure is used to represent DirectClass color pixels
in ImageMagick. If the image is indicated as a PseudoClass image, its Direct-
Class representation is only valid immediately after calling SyncImage(). If an
image is set as PseudoClass and the DirectClass representation is modified, the
image should then be set as DirectClass. Use QuantizeImage() to restore the
PseudoClass colormap if the DirectClass representation is modified.

20 API Structures and Enumerations 97

The members of the PixelPacket structure are shown in the following table:

Table20.11: PixelPacket Structure

PixelPacket Structure

Member Type Description
red Quantumred.
green Quantumgreen.
blue Quantumblue.
opacity Quantumopacity (0 is fully opaque).

PrimaryInfo The PrimaryInfo structure is used to represent chromaticity points, us-
ing (x,y), or for temporary use in converting chromaticity from CIE (X,Y,Z).

The members of the PrimaryInfo structure are shown in the following table:

Table20.12: PrimaryInfo Structure

PrimaryInfo Structure

Member Type Description
x doublex.
y doubley.
z doubleZ (temporary use only).

ProfileInfo The ProfileInfo structure is used to represent ICC, IPCT, and generic
profiles in ImageMagick (stored as an opaque BLOB).

The members of the ProfileInfo structure are shown in the following table:

98 ImageMagick

Table20.13: ProfileInfo Structure

ProfileInfo Structure

Member Type Description
length unsigned int length.
info unsigned char *data.
name char * profile name.

RectangleInfo The RectangleInfo structure is used to represent positioning infor-
mation in ImageMagick.

The members of the RectangleInfo structure are shown in the following table:

Table20.14: RectangleInfo Structure

RectangleInfo Structure

Member Type Description
width unsigned longwidth.
height unsigned longheight.
x long x.
y long y.

SegmentInfo Segment info.

Table20.15: SegmentInfo Structure

SegmentInfo Structure

Member Type Description
x1 doublex1.
y1 doubley1.

20 API Structures and Enumerations 99

SegmentInfo Structure (continued)

Member Type Description
x2 doublex2.
y2 doubley2.

Timer Timer data.

Table20.16: Timer Structure

Timer Structure

Member Type Description
start doublestart time.
stop doublestop time.
total doubletotal time.

TimerInfo Timer info.

Table20.17: TimerInfo Structure

TimerInfo Structure

Member Type Description
user Timer user time.
elapsed Timer elapsed time.
state TimerState timer state.
signatureunsigned longinternal signature.

20.2 API Enumerations

AlignType The type of text alignment.

100 ImageMagick

Table20.18: AlignType Enumeration

AlignType Enumeration

Enumeration Description
UndefinedAlign Undefined alignment.
LeftAlign Left alignment.
RightAlign Right alignment.
CenterAlign Center alignment.

CacheType The cache type.

Table20.19: CacheType Enumeration

CacheType Enumeration

Enumeration Description
UndefinedCache Undefined cache type.
MemoryCache Memory cache type.
DiskCache Disk cache type.
MemoryMappedCache Memory mapped cache type.

ChannelType ChannelType is used as an argument when doing color separations.
Use ChannelType when extracting a layer from an image. MatteChannel is use-
ful for extracting the opacity values from an image. Note that an image may be
represented in RGB, RGBA, CMYK, or CMYKA, pixel formats and a channel
may only be extracted if it is valid for the current pixel format.

20 API Structures and Enumerations 101

Table20.20: ChannelType Enumeration

ChannelType Enumeration

Enumeration Description
UndefinedChannel Unset value.
RedChannel Extract red channel (RGB images only).
GreenChannel Extract green channel (RGB images only).
BlueChannel Extract blue channel (RGB images only).
CyanChannel Extract cyan channel (CMYK images only).
MagentaChannel Extract magenta channel (CMYK images only).
YellowChannel Extract yellow channel (CMYK images only).
BlackChannel Extract black channel (CMYK images only).
OpacityChannel Extract opacity channel (CMYKA images only).
MatteChannel Extract matte (opacity values) channel (RGB images only).

ClassType ClassType specifies the image storage class.

Table20.21: ClassType Enumeration

ClassType Enumeration

Enumeration Description
UndefinedClass Unset value.
DirectClass Image is composed of pixels which represent literal color values.
PseudoClass Image is composed of pixels which specify an index in a color

palette.

ClipPathUnits ClassType specifies the units used in clipping paths.

102 ImageMagick

Table20.22: ClipPathUnits Enumeration

ClipPathUnits Enumeration

Enumeration Description
UserSpace User space.
UserSpaceOnUse User space on use.
ObjectBoundingBox Object bounding box.

ColorspaceType The ColorspaceType enumeration is used to specify the colorspace
that quantization (color reduction and mapping) is done under or to specify the
colorspace when encoding an output image. Colorspaces are ways of describing
colors to fit the requirements of a particular application (e.g. Television, offset
printing, color monitors). Color reduction, by default, takes place in the RGB-
Colorspace. Empirical evidence suggests that distances in color spaces such as
YUVColorspace or YIQColorspace correspond to perceptual color differences
more closely han do distances in RGB space. These color spaces may give better
results when color reducing an image. Refer to quantize for more details.

When encoding an output image, the colorspaces RGBColorspace, CMYKCol-
orspace, and GRAYColorspace may be specified. The CMYKColorspace op-
tion is only applicable when writing TIFF, JPEG, and Adobe Photoshop bitmap
(PSD) files.

Table20.23: ColorspaceType Enumeration

ColorspaceType Enumeration

Enumeration Description
UndefinedColorspace Unset value.
RGBColorspace Red-Green-Blue colorspace.
GRAYColorspace
TransparentColorspace The Transparent color space behaves uniquely in that

it preserves the matte channel of the image if it exists.
OHTAColorspace
XYZColorspace
YCbCrColorspace
YCCColorspace

20 API Structures and Enumerations 103

ColorspaceType Enumeration (continued)

Enumeration Description
YIQColorspace
YPbPrColorspace
YUVColorspace Y-signal, U-signal, and V-signal colorspace. YUV is

most widely used to encode color for use in television
transmission.

CMYKColorspace Cyan-Magenta-Yellow-Black colorspace. CYMK is
a subtractive color system used by printers and pho-
tographers for the rendering of colors with ink or
emulsion, normally on a white surface.

sRGBColorspace

ComplianceType ComplianceType specifies the system used for relating color
names to values.

Table20.24: ComplianceType Enumeration

ComplianceType Enumeration

Enumeration Description
UndefinedCompliance Undefine compliance.
SVGCompliance SVG compliance.
X11Compliance X11 compliance.
XPMCompliance XPM compliance.
AllCompliance All compliance.

CompositeOperator CompositeOperator is used to select the image composition
algorithm used to compose a composite image with an image. By default, each
of the composite mage pixels are replaced by the corresponding image tile pixel.
Specify CompositeOperator to select a different algorithm.

104 ImageMagick

Table20.25: CompositeOperator Enumeration

CompositeOperator Enumeration

Enumeration Description
UndefinedCompositeOp Unset value.
OverCompositeOp The result is the union of the the two image

shapes with the composite image obscuring im-
age in the region of overlap.

InCompositeOp The result is a simply composite image cut by
the shape of image. None of the image data of
image is included in the result.

OutCompositeOp The resulting image is composite image with
the shape of image cut out.

AtopCompositeOp The result is the same shape as image image,
with composite image obscuring image there
the image shapes overlap. Note that this differs
from OverCompositeOp because the portion of
composite image outside of image’s shape does
not appear in the result.

XorCompositeOp The result is the image data from both compos-
ite image and image that is outside the overlap
region. The overlap region will be blank.

PlusCompositeOp The result is just the sum of the image data.
Output values are cropped to MaxRGB (no
overflow). This operation is independent of the
matte channels.

MinusCompositeOp The result of composite image - image, with
overflow cropped to zero.

AddCompositeOp The result of composite image + image,
with overflow wrapping around (mod
(MaxRGB+1)).

SubtractCompositeOp The result of composite image - image,
with underflow wrapping around (mod
(MaxRGB+1)). The add and subtract op-
erators can be used to perform reverible
transformations.

DifferenceCompositeOp The result of abs (composite image - image).
This is useful for comparing two very similar
images.

MultiplyCompositeOp The result of image multiplied by composite
image.

20 API Structures and Enumerations 105

CompositeOperator Enumeration (continued)

Enumeration Description
BumpmapCompositeOp The result of image shaded by composite im-

age.
CopyCompositeOp The resulting image is image replaced with

composite image. Here the matte information
is ignored.

CopyRedCompositeOp The resulting image is the red channel in image
replaced with the red channel in composite im-
age. The other channels are copied untouched.

CopyGreenCompositeOp The resulting image is the green channel in im-
age replaced with the green channel in compos-
ite image. The other channels are copied un-
touched.

CopyBlueCompositeOp The resulting image is the blue channel in im-
age replaced with the blue channel in compos-
ite image. The other channels are copied un-
touched.

CopyOpacityCompositeOp The resulting image is the opacity channel
in image replaced with the opacity channel
in composite image. The other channels are
copied untouched. The image compositor re-
quires a matte, or opacity channel in the image
for some operations. This extra channel usu-
ally defines a mask which represents a sort of
a cookie-cutter for the image. This is the case
when matte is opaque (full coverage) for pixels
inside the shape, zero outside, and between 0
and MaxRGB on the boundary. For certain op-
erations, if image does not have a matte chan-
nel, it is initialized with 0 for any pixel match-
ing in color to pixel location (0, 0), otherwise
MaxRGB (to work properly borderWidth must
be 0).

ClearCompositeOp Clear Op
DissolveCompositeOp Dissolve Op
DisplaceCompositeOp Displace Op
ModulateCompositeOp Modulate Op
ThresholdCompositeOp Threshold Op
NoCompositeOp No Op
DarkenCompositeOp Darken Op
LightenCompositeOp Lighten Op
HueCompositeOp Hue Op

106 ImageMagick

CompositeOperator Enumeration (continued)

Enumeration Description
SaturateCompositeOp Saturate Op
ColorizeCompositeOp Colorize Op
LuminizeCompositeOp Luminize Op
ScreenCompositeOp Screen Op
OverlayCompositeOp overlay Op

CompressionType CompressionType is used to express the desired compression
type when encoding an image. Be aware that most image types only support a
sub-set of the available compression types. If the compression type specified is
incompatable with the image, ImageMagick selects a compression type compat-
able with the image type.

Table20.26: CompressionType Enumeration

CompressionType Enumeration

Enumeration Description
UndefinedCompression Unset value.
NoCompression No compression.
BZipCompression BZip (Burrows-Wheeler block-sorting text

compression algorithm and Huffman cod-
ing) as used by bzip2 utilities.

FaxCompression CCITT Group 3 FAX compression.
Group4Compression CCITT Group 4 FAX compression (used

only for TIFF).
JPEGCompression JPEG compression.
LosslessJPEGCompression Lossless JPEG compression.
LZWCompression Lempel-Ziv-Welch (LZW) compression.
RunlengthEncodedCompression Run-Length encoded (RLE) compression.
ZipCompression Lempel-Ziv compression (LZ77) as used

in PKZIP and GNU gzip.

DecorationType Types of text decoration.

20 API Structures and Enumerations 107

Table20.27: DecorationType Enumeration

DecorationType Enumeration

Enumeration Description
NoDecoration No decoration.
UnderlineDecoration Underline decoration.
OverlineDecoration Overline decoration.
LineThroughDecoration LineThrough decoration.

DisposeType DisposeType specifies the GIF disposal method for an image.

Table20.28: DisposeType Enumeration

DisposeType Enumeration

Enumeration Description
UndefinedDispose Disposal method is unspecified.
NoneDispose Do not dispose of the image.
BackgroundDispose Overwrite the image area with the background color.
PreviousDispose Overwrite the image area with what was there previously.

EndianType EndianType specifies the “endianness” of the output file, when the
format supports different endian types.

Table20.29: EndianType Enumeration

EndianType Enumeration

Enumeration Description
UndefinedEndian Unset value.
LSBEndian LSB First (Little Endian)
MSBEndian MSB First (Big endian)

108 ImageMagick

ExceptionType Exception types (Warnings, Errors, and Fatal Errors).

Table20.30: ExceptionType Enumeration

ExceptionType Enumeration

Enumeration Description
UndefinedException Undefined exception.
WarningException Warning exception.
ResourceLimitWarning Resource limit warning.
TypeWarning Type warning.
OptionWarning Option warning.
DelegateWarning Delegate warning.
MissingDelegateWarning Missing delegate warning.
CorruptImageWarning Corrupt image warning.
FileOpenWarning File open warning.
BlobWarning Blob warning.
StreamWarning Stream warning.
CacheWarning Cache warning.
CoderWarning Coder warning.
ModuleWarning Module warning.
DrawWarning Draw warning.
ImageWarning Image warning.
XServerWarning X server warning.
MonitorWarning Monitor warning.
RegistryWarning Registry warning.
ConfigureWarning Configuration warning.
ErrorException Error exception.
FatalException Fatal exception.
ResourceLimitError Resource limit error.
TypeError Type error.
OptionError Option error.
DelegateError Delegate error.
MissingDelegateError Missing delegate error.
CorruptImageError Corrupt image error.
FileOpenError File open error.
BlobError Blob error.
StreamError Stream error.
CacheError Cache error.
CoderError Coder error.
ModuleError Module error.
DrawError Draw error.

20 API Structures and Enumerations 109

ExceptionType Enumeration (continued)

Enumeration Description
ImageError Image error.
XServerError X server error.
MonitorError Monitor error.
RegistryError Registry error.
ConfigureError Configuration error.
FatalErrorException Fatal error exception.
ResourceLimitFatalError Resource limit fatal error.
TypeFatalError Type fatal error.
OptionFatalError Option fatal error.
DelegateFatalError Delegate fatal error.
MissingDelegateFatalError Missing delegate fatal error.
CorruptImageFatalError Corrupt Image fatal error.
FileOpenFatalError File open fatal error.
BlobFatalError Blob fatal error.
StreamFatalError Stream fatal error.
CacheFatalError Cache fatal error.
CoderFatalError Coder fatal error.
ModuleFatalError Module fatal error.
DrawFatalError Draw fatal error.
ImageFatalError Image fatal error.
XServerFatalError X server fatal error.
MonitorFatalError Monitor fatal error.
RegistryFatalError Registry fatal error.
ConfigureFatalError Configure fatal error.

FillRule Types of fill rules.

Table20.31: FillRule Enumeration

FillRule Enumeration

Enumeration Description
UndefinedRule Undefined fill rule.
EvenOddRule Even-odd fill rule.
NonZeroRule Nonzero fill rule.

110 ImageMagick

FilterTypes FilterTypes is used to adjust the filter algorithm used when resizing im-
ages. Different filters experience varying degrees of success with various images
and can take signicantly different amounts of processing time. ImageMagick
uses the Lanczos filter by default since this filter has been shown to provide the
best results for most images in a reasonable amount of time. Other filter types
(e.g. TriangleFilter) may execute much faster but may show artifacts when the
image is re-sized or around diagonal lines. The only way to be sure is to test the
filter with sample images.

Table20.32: FilterTypes Enumeration

FilterTypes Enumeration

Enumeration Description
UndefinedFilter Unset value.
PointFilter Point Filter
BoxFilter Box Filter
TriangleFilter Triangle Filter
HermiteFilter Hermite Filter
HanningFilter Hanning Filter
HammingFilter Hamming Filter
BlackmanFilter Blackman Filter
GaussianFilter Gaussian Filter
QuadraticFilter Quadratic Filter
CubicFilter Cubic Filter
CatromFilter Catrom Filter
MitchellFilter Mitchell Filter
LanczosFilter Lanczos Filter
BesselFilter Bessel Filter
SincFilter Sinc Filter

GeometryFlags Flags that are set depending on what is found while parsing a ge-
ometry string.

20 API Structures and Enumerations 111

Table20.33: GeometryFlags Enumeration

GeometryFlags Enumeration

Enumeration Description
NoValue No value was found.
XValue An “x” value was found.
YValue A “y” value was found.
WidthValue A “width” value was found.
HeightValue A “height” value was found.
AllValues All four values were found.
XNegative A negative “x” value was found.
YNegative A negative “y” value was found.
PercentValue A percent sign was found.
AspectValue An exclamation point was not found.
LessValue A “<” symbol was found.
GreaterValue A “>” symbol was found.
AreaValue An “@” symbol was found.

GravityType GravityType specifies positioning of an object (e.g. text, image) within
a bounding region (e.g. an image). Gravity provides a convenient way to locate
objects irrespective of the size of the bounding region, in other words, you don’t
need to provide absolute coordinates in order to position an object. A common
default for gravity is NorthWestGravity.

Table20.34: GravityType Enumeration

GravityType Enumeration

Enumeration Description
ForgetGravity Don’t use gravity.
NorthWestGravity Position object at top-left of region.
NorthGravity Postiion object at top-center of region.
NorthEastGravity Position object at top-right of region.
WestGravity Position object at left-center of region.
CenterGravity Position object at center of region.
EastGravity Position object at right-center of region.
SouthWestGravity Position object at left-bottom of region.

112 ImageMagick

GravityType Enumeration (continued)

Enumeration Description
SouthGravity Position object at bottom-center of region.
SouthEastGravity Position object at bottom-right of region.

ImageType ImageType indicates the type classification of the image.

Table20.35: ImageType Enumeration

ImageType Enumeration

Enumeration Description
UndefinedType Unset value.
BilevelType Monochrome image.
GrayscaleType Grayscale image.
PaletteType Indexed color (palette) image.
PaletteMatteType Indexed color (palette) image with opacity.
TrueColorType Truecolor image.
TrueColorMatteType Truecolor image with opacity.
ColorSeparationType Cyan/Yellow/Magenta/Black (CYMK) image.

InterlaceType InterlaceType specifies the ordering of the red, green, and blue pixel
information in the image. Interlacing is usually used to make image information
available to the user faster by taking advantage of the space vs time tradeoff.
For example, interlacing allows images on the Web to be recognizable sooner
and satellite images to accumulate/render with image resolution increasing over
time.

Use LineInterlace or PlaneInterlace to create an interlaced GIF or progressive
JPEG image.

20 API Structures and Enumerations 113

Table20.36: InterlaceType Enumeration

InterlaceType Enumeration

Enumeration Description
UndefinedInterlace Unset value.
NoInterlace RGBRGBRGBRGBRGBRGB... (Don’t interlace im-

age).
LineInterlace RRR...GGG...BBB...RRR...GGG...BBB... (Use scan-

line interlacing).
PlaneInterlace RRRRRR...GGGGGG...BBBBBB... (Use plane inter-

lacing).
PartitionInterlace Similar to plane interlacing except that the different

planes are saved to individual files (e.g. image.R, im-
age.G, and image.B).

LineCap Types of line caps.

Table20.37: LineCap Enumeration

LineCap Enumeration

Enumeration Description
UndefinedCap Undefined cap.
ButtCap Butt cap.
RoundCap Round cap.
SquareCap Square cap.

LineJoin Types of line joining.

114 ImageMagick

Table20.38: LineJoin Enumeration

LineJoin Enumeration

Enumeration Description
UndefinedJoin Undefined line join method.
MiterJoin Miter line join method.
RoundJoin Round line join method.
BevelJoin Bevel line join method.

LogEventType Magic methods.

Table20.39: LogEventType Enumeration

LogEventType Enumeration

Enumeration Description
UndefinedMagicMethod Undefined magic method.
NoEvents Do not log any events.
ConfigureEvent Log configure events.
AnnotateEvent Log annotate events.
DrawEvent Log draw events.
LocaleEvent Log locale events.
CoderEvent Log coder events.
TransformEvent transform events.
X11Event Log X11 events.
CacheEvent Log cache events.
BlobEvent Log blob events.
DeprecateEvent Log deprecated events.
UserEvents Log user events.
AllEvents Log all events.

MagicMethod Magic methods.

20 API Structures and Enumerations 115

Table20.40: MagicMethod Enumeration

MagicMethod Enumeration

Enumeration Description
UndefinedMagicMethod Undefined magic method.
StringMagicMethod String magic method.

MapMode Map modes.

Table20.41: MapMode Enumeration

MapMode Enumeration

Enumeration Description
ReadMode Read map mode.
WriteMode Write map mode.
IOMod I/O map mode.

MontageMode Montage modes.

Table20.42: MontageMode Enumeration

MontageMode Enumeration

Enumeration Description
UndefinedMode Undefined montage mode.
FrameMode Frame montage mode.
UnframeMode Unframe montage mode.
ConcatenateMode Concatenate montage mode.

116 ImageMagick

NoiseType NoiseType is used as an argument to select the type of noise to be added
to the image.

Table20.43: NoiseType Enumeration

NoiseType Enumeration

Enumeration Description
UniformNoise Uniform noise.
GaussianNoise Gaussian noise.
MultiplicativeGaussianNoise Multiplicative Gaussian noise.
ImpulseNoise Impulse noise.
LaplacianNoise Laplacian noise.
PoissonNoise Poisson noise.

PaintMethod PaintMethod specifies how pixel colors are to be replaced in the im-
age. It is used to select the pixel-filling algorithm employed.

Table20.44: PaintMethod Enumeration

PaintMethod Enumeration

Enumeration Description
PointMethod Replace pixel color at point.
ReplaceMethod Replace color for all image pixels matching color at

point.
FloodfillMethod Replace color for pixels surrounding point until en-

countering pixel that fails to match color at point.
FillToBorderMethod Replace color for pixels surrounding point until en-

countering pixels matching border color.
ResetMethod Replace colors for all pixels in image with pen

color.

PreviewType Preview types.

20 API Structures and Enumerations 117

Table20.45: PreviewType Enumeration

PreviewType Enumeration

Enumeration Description
UndefinedPreview Undefined Preview.
RotatePreview Preview of Rotate effect
ShearPreview Preview of Shear effect.
RollPreview Preview of Roll effect.
HuePreview Preview of Hue effect.
SaturationPreview Preview of Saturation effect.
BrightnessPreview Preview of Brightness effect.
GammaPreview Preview of Gamma effect.
SpiffPreview Preview of Spiff effect.
DullPreview Preview of Dull effect.
GrayscalePreview Preview of Grayscale effect.
QuantizePreview Preview of Quantize effect.
DespecklePreview Preview of Despeckle effect.
ReduceNoisePreview Preview of ReduceNoise effect.
AddNoisePreview Preview of AddNoise effect.
SharpenPreview Preview of Sharpen effect.
BlurPreview Preview of Blur effect.
ThresholdPreview Preview of Threshold effect.
EdgeDetectPreview Preview of EdgeDetect effect.
SpreadPreview Preview of Spread effect.
SolarizePreview Preview of Solarize effect.
ShadePreview Preview of Shade effect.
RaisePreview Preview of Raise effect.
SegmentPreview Preview of Segment effect.
SwirlPreview Preview of Swirl effect.
ImplodePreview Preview of Implode effect.
WavePreview Preview of Wave effect.
OilPaintPreview Preview of OilPaint effect.
CharcoalDrawingPreview Preview of CharcoalDrawing effect.
JPEGPreview Preview of JPEG compression.

PrimitiveType Primitives used in drawing operations.

118 ImageMagick

Table20.46: PrimitiveType Enumeration

PrimitiveType Enumeration

Enumeration Description
UndefinedPrimitive Undefined Primitive.
PointPrimitive Point Primitive.
LinePrimitive Line Primitive.
RectanglePrimitive Rectangle Primitive.
RoundRectanglePrimitive Round Rectangle Primitive.
ArcPrimitive Arc Primitive.
EllipsePrimitive Ellipse Primitive.
CirclePrimitive Circle Primitive.
PolylinePrimitive Polyline Primitive.
PolygonPrimitive Polygon Primitive.
BezierPrimitive Bezier Primitive.
ColorPrimitive Color Primitive.
MattePrimitive Matte Primitive.
TextPrimitive Text Primitive.
ImagePrimitive Image Primitive.
PathPrimitive Path Primitive.

ProfileType Profiles can be embedded in an image file by digital cameras and by
image processing software. ImageMagick recognizes the profiles listed here, and
also stores other profiles found in images as “generic” profiles.

Table20.47: ProfileType Enumeration

ProfileType Enumeration

Enumeration Description
UndefinedProfile Unset value.
ICMProfile ICC Color Profile.
IPTCProfile IPTC Newswire Profile.

20 API Structures and Enumerations 119

RenderingIntent Rendering intent is a concept defined by ICC Spec ICC.1:1998-
09, “File Format for Color Profiles”. ImageMagick uses RenderingIntent in or-
der to support ICC Color Profiles.

From the specification: “Rendering intent specifies the style of reproduction to
be used during the evaluation of this profile in a sequence of profiles. It applies
specifically to that profile in the sequence and not to the entire sequence. Typi-
cally, the user or application will set the rendering intent dynamically at runtime
or embedding time.”

Table20.48: RenderingIntent Enumeration

RenderingIntent Enumeration

Enumeration Description
UndefinedIntent Unset value.
SaturationIntent A rendering intent that specifies that the saturation of the

pixels in the image is preserved perhaps at the expense of
accuracy in hue and lightness.

PerceptualIntent A rendering intent that specifies that the full gamut of the
image is compressed or expanded to fill the gamut of the
destination device. Gray balance is preserved but colori-
metric accuracy might not be preserved.

AbsoluteIntent Absolute colorimetric.
RelativeIntent Relative colorimetric.

ResolutionType By default, ImageMagick defines resolutions in pixels per inch.
ResolutionType provides a means to adjust this.

Table20.49: ResolutionType Enumeration

ResolutionType Enumeration

Enumeration Description
UndefinedResolution Unset value.
PixelsPerInchResolution Density specifications are specified in units

of pixels per inch (english units).
PixelsPerCentimeterResolution Density specifications are specified in units

of pixels per centimeter (metric units).

120 ImageMagick

StretchType Stretch types used in rendering text.

Table20.50: StretchType Enumeration

StretchType Enumeration

Enumeration Description
NormalStretch Normal stretch style.
UltraCondensedStretch Ultra condensed stretch style.
ExtraCondensedStretch Extra condensed stretch style.
CondensedStretch Condensed stretch style.
SemiCondensedStretch Semicondensed stretch style.
SemiExpandedStretch Semi expanded stretch style.
ExpandedStretch Expanded stretch style.
ExtraExpandedStretch Extra expanded stretch style.
UltraExpandedStretch Ultra expanded stretch style.
AnyStretch Any stretch style.

StyleType Style types used in rendering text.

Table20.51: StyleType Enumeration

StyleType Enumeration

Enumeration Description
NormalStyle Normal style.
ItalicStyle Italic style.
ObliqueStyle Oblique style.
AnyStyle Any style.

TimerState Timer states.

20 API Structures and Enumerations 121

Table20.52: TimerState Enumeration

TimerState Enumeration

Enumeration Description
UndefinedTimerState Undefined timer state.
StoppedTimerState Stopped timer state.
RunningTimerState Running timer state.

VirtualPixelMethod Virtual Pixel methods used in operations that require an off-
image pixel.

Table20.53: VirtualPixelMethod Enumeration

VirtualPixelMethod Enumeration

Enumeration Description
NormalStyle Normal style.
UndefinedVirtualPixelMethod Undefined method.
ConstantVirtualPixelMethod Use the background color.
EdgeVirtualPixelMethod Extend the edge color.
MirrorVirtualPixelMethod Mirror the image.
TileVirtualPixelMethod Tile the image.

21 C API Methods

21.1 Methods to Constitute an Image

ConstituteImage() create an image from pixel data.

Image *ConstituteImage (const unsigned long width, const unsigned long
height, const char *map, const StorageType type, const void *pixels,
ExceptionInfo *exception)

ConstituteImage() returns an image from the pixel data you supply. The pixel
data must be in scanline order top-to-bottom. The data can be of typechar,
short int, int, long, float, or double. Float anddoublerequire the pixels to be
normalized [0..1] otherwise [0..MaxRGB]. For example, to create a 640 x 480
image from unsigned red-green-blue character data, use

image = ConstituteImage(640, 480, "RGB", CharPixel, pixels,
exception);

A description of each parameter follows:

width Width in pixels of the image.
height Height in pixels of the image.
map This string reflects the expected ordering of the pixel array. It can be any

combination or order of R = red, G = green, B = blue, A = alpha, C = cyan,
Y = yellow, M = magenta, K = black, or I = intensity (for grayscale).

type Define the data type of the pixels. Float and double types are expected to
be normalized [0..1] otherwise [0..MaxRGB]. Choose from these types:

CharPixel ShortPixel IntegerPixel
LongPixel FloatPixel DoublePixel

pixels This array of values contain the pixel components as defined bymapand
type . The expected length of the array varies depending on the values of
width , height , map, andtype .

exception Return any errors or warnings in this structure.

122

21 C API Methods 123

DispatchImage() extract pixel data from an image.

unsigned int DispatchImage(Image *image, const long x, const long y, const
unsigned long columns, const unsigned long rows, const char *map,
const StorageType type, void *pixels, ExceptionInfo *exception)

DispatchImage() extracts pixel data from an image and returns it to you. The
method returns False on success otherwise True if an error is encountered. The
data is returned aschar, short int, int, long, float, or doublein the order specified
by map.

Suppose we want want to extract the first scanline of a 640x480 image as char-
acter data in red-green-blue order:

status = DispatchImage(image, 0, 0, 640, 1, "RGB", 0, pixels,
exception);

A description of each parameter follows:

image The image.
x, y, columns, rows These values define the perimeter of a region of pixels you

want to extract.
map This string reflects the expected ordering of the pixel array. It can be any

combination or order of R = red, G = green, B = blue, A = alpha, C = cyan,
Y = yellow, M = magenta, K = black, or I = intensity (for grayscale).

type Define the data type of the pixels. Float and double types are normalized
to [0..1] otherwise [0..MaxRGB]. Choose from these types:

CharPixel ShortPixel IntegerPixel
LongPixel FloatPixel DoublePixel

pixels This array of values contain the pixel components as defined bymap
andtype . You must preallocate this array where the expected length varies
depending on the values ofwidth , height , map, andtype .

exception Return any errors or warnings in this structure.

PingImage() get information about an image.

Image *PingImage(const ImageInfo *imageinfo, ExceptionInfo *excep-
tion)

PingImage() returns all the attributes of an image or image sequence except for
the pixels. It is much faster and consumes far less memory than ReadImage().
On failure, a NULL image is returned andexception describes the reason for
the failure.

A description of each parameter follows:

124 ImageMagick

image info Ping the image defined by thefile or filename members of
this structure.

exception Return any errors or warnings in this structure.

ReadImage() read one or more image files.

Image *ReadImage(const ImageInfo *imageinfo, ExceptionInfo *excep-
tion)

ReadImage() reads an image or image sequence from a file or file handle. On
failure, a NULL image is returned andexception describes the reason for the
failure.

A description of each parameter follows:

image info Read the image defined by thefile or filename members of
this structure.

exception Return any errors or warnings in this structure.

WriteImage() write one or more image files.

unsigned int WriteImage(const ImageInfo *imageinfo, Image *image)

Use Write() to write an image or an image sequence to a file or filehandle. If
writing to a file on disk, the name is defined by the filename member of the
image structure. Write() returns 0 is there is a memory shortage or if the image
cannot be written. Check theexception member ofimage to determine the
cause for any failure.

A description of each parameter follows:

image info The image info.
image The image.

21.2 ImageMagick Image Methods

AllocateImage() allocate an image.

Image *AllocateImage(const ImageInfo *imageinfo)

AllocateImage() returns a pointer to an image structure initialized to default val-
ues.

A description of each parameter follows:

image info Many of the image default values are set from this structure. For
example, filename, compression, depth, background color, and others.

21 C API Methods 125

AllocateImageColormap() allocate an image colormap.

unsigned int AllocateImageColormap(Image *image, const unsigned long
colors)

AllocateImageColormap() allocates an image colormap and initializes it to a
linear gray colorspace. If the image already has a colormap, it is replaced. Allo-
cateImageColormap() returns True if successful, otherwise False if there is not
enough memory.

A description of each parameter follows:

image The image.
colors The number of colors in the image colormap.

AllocateNextImage() allocate the next image in a sequence.

void AllocateNextImage(const ImageInfo *imageinfo, Image *image)

Use AllocateNextImage() to initialize the next image in a sequence to default
values. Thenext member ofimage points to the newly allocated image. If
there is a memory shortage,next is assigned NULL.

A description of each parameter follows:

image info Many of the image default values are set from this structure. For
example, filename, compression, depth, background color, and others.

image The image.

AnimateImages() animate an image sequence.

unsigned int AnimateImages(const ImageInfo *imageinfo, Image *image)

AnimateImages() repeatedly displays an image sequence to any X window screen.
It returns a value other than 0 if successful. Check theexception member of
image to determine the cause for any failure.

A description of each parameter follows:

image info The image info.
image The image.

126 ImageMagick

AppendImages() append a set of images.

Image *AppendImages (Image *image, const unsigned int stack, Excep-
tionInfo *exception)

The Append() method takes a set of images and appends them to each other.
Each image in the set must have the same width or height (or both). Append()
returns a single image where each image in the original set is side-by-side if all
the heights the same or stacked on top of each other if all widths are the same.
On failure, a NULL image is returned andexception describes the reason for
the failure.

A description of each parameter follows:

image The image sequence.
stack An unsigned value other than stacks rectangular image top-to-bottom oth-

erwise left-to-right.
exception Return any errors or warnings in this structure.

AverageImages() average a set of images.

Image *AverageImages (const Image *image, ExceptionInfo *exception)

The Average() method takes a set of images and averages them together. Each
image in the set must have the same width and height. Average() returns a single
image with each corresponding pixel component of each image averaged. On
failure, a NULL image is returned andexception describes the reason for the
failure.

A description of each parameter follows:

image The image sequence.
exception Return any errors or warnings in this structure.

ChannelImage() extract a channel from the image.

unsigned int ChannelImage (Image *image, const ChannelType channel)

Extract a channel from the image. A channel is a particular color component of
each pixel in the image. Choose from these components:

A description of each parameter follows:

image The image.

21 C API Methods 127

channel Identify which channel to extract:

Red
Cyan
Green
Magenta
Blue
Yellow
Opacity
Black

CloneImage() create a new copy of an image.

Image *CloneImage(Image *image, const unsigned long columns, const un-
signed long rows, const unsigned int orphan, ExceptionInfo *exception)

CloneImage() copies an image and returns the copy as a new image object. If
the specified columns and rows is 0, an exact copy of the image is returned, oth-
erwise the pixel data is undefined and must be initialized with the SetImagePix-
els() and SyncImagePixels() methods. On failure, a NULL image is returned and
exception describes the reason for the failure.

A description of each parameter follows:

image The image.
columns The number of columns in the cloned image.
rows The number of rows in the cloned image.
orphan With a value other than 0, the cloned image is an orphan. An orphan is

a stand-alone image that is not assocated with an image list. In effect, the
next andprevious members of the cloned image is set to NULL.

exception Return any errors or warnings in this structure.

CloneImageInfo() clone an image info structure.

ImageInfo *CloneImageInfo(const ImageInfo *imageinfo)

CloneImageInfo() makes a copy of the given image info structure. If NULL is
specified, a new image info structure is created initialized to default values.

A description of each parameter follows:

image info The image info.

128 ImageMagick

CompositeImage() composite one image to another.

unsigned int CompositeImage(Image *image, const CompositeOperator com-
pose, const Image *compositeimage, const long xoffset, const long
y offset)

CompositeImage() returns the second image composited onto the first at the
specified offsets.

A description of each parameter follows:

image The image.
composeThis operator affects how the composite is applied to the image. The

default is Over. Choose from these operators:

OverCompositeOP DifferenceCompositeOP XorCompositeOP
AtopCompositeOP DisplaceCompositeOP PlusCompositeOP
MinusCompositeOP SubtractCompositeOP AddCompositeOP
InCompositeOP BumpmapCompositeOP CopyCompositeOP
OutCompositeOP

compositeimage The composite image.
x offset The column offset of the composited image. If the offset is negative, it

is measured between the right edges of the images.
y offset The row offset of the composited image. If it is negative, it is measured

between the bottom edges of the images.

CycleColormapImage() displace a colormap.

CycleColormapImage(Image *image, const int amount)

CycleColormap() displaces an image’s colormap by a given number of positions.
If you cycle the colormap a number of times you can produce a psychodelic
effect.

A description of each parameter follows:

image The image.
amount Offset the colormap this much.

DescribeImage() describe an image.

void DescribeImage (Image *image, FILE *file, const unsigned int verbose)

21 C API Methods 129

DescribeImage() describes an image by printing its attributes to the file. At-
tributes include the image width, height, size, and others.

A description of each parameter follows:

image The image.
file The file, typically stdout.
verbose A value other than zero prints additional detailed information about the

image.

DestroyImage() destroy an image.

void DestroyImage(Image *image)

DestroyImage() dereferences an image, deallocating memory associated with
the image if the reference count becomes zero.

A description of each parameter follows:

image The image.

DestroyImageInfo() destroy image info.

void DestroyImageInfo(ImageInfo *imageinfo)

DestroyImageInfo() deallocates memory associated withimage Info .

A description of each parameter follows:

image info The image info.

DisplayImages() display an image sequence.

unsigned int DisplayImages(const ImageInfo *imageinfo, Image *image)

DisplayImages() displays an image sequence to any X window screen. It returns
a value other than 0 if successful. Check theexception member ofimage to
determine the reason for any failure.

A description of each parameter follows:

image info The image info.
image The image.

130 ImageMagick

GetImageDepth() get image depth.

unsigned int GetImageDepth(Image *image)

GetImageDepth() returns the depth of the image, either 8 or 16 bits. By default,
pixel components are stored as 16-bit two byte unsigned short integers that range
in value from 0 to 65535. However, if all the pixels have lower-order bytes that
are identical to their higher-order bytes, the image depth is 8-bit.

A description of each parameter follows:

image The image.

GetImageInfo() get image info.

void GetImageInfo(ImageInfo *imageinfo)

GetImageInfo() initializesimage info to default values.

A description of each parameter follows:

image info The image info.

GetImageType() get image type.

ImageType GetImageType(const Image *image,ExceptionInfo *exception)

GetImageType() returns the type of image:

Bilevel Grayscale GrayscaleMatte
Palette PaletteMatte TrueColor
TrueColorMatte ColorSeparation ColorSeparationMatte
Optimize

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

21 C API Methods 131

IsImagesEqual() measure the pixel differences between two images.

unsigned int IsImagesEqual(Image *image, Image *reference)

IsImagesEqual() measures the difference between colors at each pixel location of
two images. A value other than 0 means the colors match exactly. Otherwise an
error measure is computed by summing over all pixels in an image the distance
squared in RGB space between each image pixel and its corresponding pixel in
the reference image. The error measure is assigned to these image members:

mean error per pixel The mean error for any single pixel in the image.
normalized mean error The normalized mean quantization error for any sin-

gle pixel in the image. This distance measure is normalized to a range be-
tween 0 and 1. It is independent of the range of red, green, and blue values
in the image.

normalized maximum error The normalized maximum quantization error for
any single pixel in the image. This distance measure is normalized to a range
between 0 and 1. It is independent of the range of red, green, and blue values
in your image.

Accessed asimage->normalized mean error , a small normalized mean
square error, suggests the images are very similiar in spatial layout and color.

A description of each parameter follows:

image The image.
reference The reference image.

IsTaintImage() tell if an image has been altered.

unsigned int IsTaintImage(const Image *image)

IsTaintImage() returns a value other than 0 if any pixel in the image has been
altered since it was first constituted.

A description of each parameter follows:

image The image.

ProfileImage() add or remove a profile.

unsigned int ProfileImage(Image *image, const char *profilename, const
char *filename)

132 ImageMagick

ProfileImage() adds or removes a ICM, IPTC, or generic profile from an image.
If the profile name is defined it is deleted from the image. If a filename is given,
one or more profiles are read and added to the image. ProfileImage() returns a
value other than 0 if the profile is successfully added or removed from the image.

A description of each parameter follows:

image The image.
profile name The type of profile to add or remove.
filename The filename of the ICM, IPTC, or generic profile.

SetImage() set image pixels to the background color.

void SetImage(Image *image, const Quantum opacity)

SetImage() sets the red, green, and blue components of each pixel to the im-
age background color and the opacity component to the specified level of trans-
parency. The background color is defined by thebackground color member
of the image.

A description of each parameter follows:

image The image.
opacity Set each pixel to this level of transparency.

SetImageClipMask()

unsigned int SetImageClipMask(Image *image,Image *clipmask)

SetImageClipMask() associates a clip mask with the image. The clip mask must
be the same dimensions as the image.

A description of each parameter follows:

image The image.
clip mask The clip mask.

SetImageDepth()

unsigned int SetImageDepth(Image *image,const unsigned long depth)

SetImageDepth() sets the depth of the image, either 8 or 16. Some image for-
mats support both 8 and 16-bits per color component (e.g. PNG). Use SetIm-
ageDepth() to specify your preference. A value other than 0 is returned if the
depth is set. Check theexception member ofimage to determine the cause
for any failure.

A description of each parameter follows:

21 C API Methods 133

image The image.
depth The image depth.

SetImageOpacity() set image pixels transparency level.

void SetImageOpacity(Image *image, const unsigned long opacity)

SetImageOpacity() attenuates the opacity channel of an image. If the image pix-
els are opaque, they are set to the specified opacity level. Otherwise, the pixel
opacity values are blended with the supplied transparency value.

A description of each parameter follows:

image The image.
opacity The level of transparency: 0 is fully opaque and MaxRGB is fully trans-

parent.

SetImageType() set image type.

void SetImageType(Image *image, const ImageType imagetype)

SetImageType() sets the type of image. Choose from these types:

Bilevel Grayscale GrayscaleMatte
Palette PaletteMatte TrueColor
TrueColorMatte ColorSeparation ColorSeparationMatte

A description of each parameter follows:

image The image.
image type Image type.

TextureImage() tile a texture on image background.

void TextureImage(Image *image, Image *texture)

TextureImage() repeatedly tiles the texture image across and down the image
canvas.

A description of each parameter follows:

image The image.
texture This image is the texture to layer on the background.

134 ImageMagick

21.3 Working With Image Lists

In the ImageMagick API, image lists and sequences are managed by using the
“next” and “previous” pointers in the Image structure.

Every image is a member of a doubly-linked image list, as illustrated below:

+-----+ +-----+ +-----+ +-----+
NULL<prev-|image|<prev-|image|<prev-|image|<prev-|image|

| 0 |-next>| 1 |-next>| 2 |-next>| 3 |-next>NULL
+-----+ +-----+ +-----+ +-----+

+-------+
NULL<previous-|orphan |

|image |-next>NULL
+-------+

If the “previous” and “next” pointers are both are NULL, the image is called
an “orphan”. Each “orphan” is in effect a single-image list. Applications can
maintain any number of image lists. Each image belongs to only one image list.

An image sequenceis that part of animage listbeginning with a specific image,
plus the remainder of theimage list pointed to by itsnext pointer. The image
pointed to by the specific image’s “previous” pointer and other images in the
list prior to the specific image in theimage list do not form a part of theimage
sequence.

Each image, image sequence, and image list is referenced by pointing to an
image structure of typeImage * . In the illustration above, a reference to the
structure for Image 2 refers to image 2 itself, to the image sequence consisting
of images 2 and 3, and to the image list consisting of all images 0 through 3. In
the C API, functions that operate on an image list contain the words “ImageList”
as a part of the function name, and are described in this section. In general, func-
tions that operate on an image sequence contain the word “Images”, although for
legacy reasons some, such as ReadImage(), WriteImage(), and PingImage(), do
not. In general, functions that contain the word “Image” work on a single image.

CloneImageList() duplicate an image list.

Image *CloneImageList(const Image *images, ExceptionInfo *exception)

CloneImageList() returns a duplicate of the specified image list.

A description of each parameter follows:

images The image list.
exception Return any errors or warnings in this structure.

21 C API Methods 135

DeleteImageFromList() delete an image from the list.

unsigned int DeleteImageFromList(Image *images, const long offset)

DeleteImageFromList() deletes an image at the specified position in the list..

A description of each parameter follows:

images The image list.
offset The position within the list.

DestroyImageList() destroy an image list.

DestroyImageList(Image *images)

DestroyImageList() destroys an image list.

A description of each parameter follows:

images The image list.

GetImageFromList() get an image from an image list.

Image *GetImageFromList(const Image *images, const long offset, Excep-
tionInfo *exception)

GetImageFromList() returns a clone of the image at the specified position in the
image list. The clone is an “orphan”, not linked to the list.

A description of each parameter follows:

images The image list.
offset The position in the image list.
exception Return any errors or warnings in this structure.

GetImageIndexInList() the position in the list of the specified image.

unsigned long *GetImageIndexInList(const Image *images)

GetImageIndexInList() returns the position of the specified image in the image
list.

A description of each parameter follows:

images The image list.

136 ImageMagick

GetImageListLength() the number of images in the image list.

unsigned long GetImageListLength(const Image *images)

GetImageListLength() returns the number of images in the image list.

A description of each parameter follows:

images The image list.

GetPreviousImageInList() get the previous image in an image list.

Image *GetPreviousImageInList(Image *images)

GetPreviousImageInList() returns a pointer to the previous image in an image
list after the image pointed to by *images.

A description of each parameter follows:

images The image list.

GetNextImageInList() get the next image in an image list.

Image *GetNextImageInList(Image *images)

GetNextImageInList() returns a pointer to the next image in an image list after
the image pointed to by *images.

A description of each parameter follows:

images The image list.

ImageListToArray() convert an image list to an array.

Image **ImageListToArray(const Image *images, ExceptionInfo *excep-
tion)

ImageListToArray() is a convenience method that converts a linked list of im-
ages to a sequential array. For example,

Image **group;
group = ImageListToArray(images, exception);
n = GetImageListLength(images);
for (i=0; i < n; i++)

puts(group[i]->filename);
LiberateMemory((void **) &group);

21 C API Methods 137

A description of each parameter follows:

image The image list.
exception Return any errors or warnings in this structure.

NewImageList() create an empty image list.

Image *NewImageList(void)

NewImageList() creates an empty image list.

RemoveLastImageFromList() remove the last image from an image list.

Image *RemoveLastImageFromList(Image **images)

RemoveLastImageFromList() removes the last image in the list and returns it.

A description of each parameter follows:

images The image list.

AppendImageToList() adds an image list to the end of an image list.

unsigned int *AppendImageToList(Image **images, const Image *image,
ExceptionInfo *exception)

AppendImageToList() adds the image list to the end of the image list.

A description of each parameter follows:

images The image list.
image The image list to be added.
exception Return any errors or warnings in this structure.

ReverseImageList() reverse an image list.

Image *ReverseImageList(Image *images, ExceptionInfo *exception)

ReverseImageList() returns a new list with the order of images reversed from
those in the specified image list.

A description of each parameter follows:

images The image list.
exception Return any errors or warnings in this structure.

138 ImageMagick

InsertImageInList() adds an image to the end of an image list.

unsigned int InsertImageInList(Image **images,const Image *image, const
long offset,ExceptionInfo *exception)

InsertImageInList() inserts an image into the list at the specified position.

A description of each parameter follows:

images The image list.
image The image.
offset The position within the list.
exception Return any errors or warnings in this structure.

RemoveFirstImageFromList() remove and return the first image in the list.

Image *RemoveFirstImageFromList(Image **images)

RemoveFirstImageFromList() removes an image from the beginning of the spec-
ified image list.

A description of each parameter follows:

images The image list.

SpliceImageIntoList() splice an image list.

Image *SpliceImageIntoList(Image *images, const long offset, const un-
signed long length, const Image *splices, ExceptionInfo *exception)

SpliceImageIntoList() removes the images designated by offset and length from
the list and replaces them with the specified list. The ”splices” list is not neces-
sarily of the same length.

A description of each parameter follows:

images The image list.
offset The position in the image list.
length The length of the image list to remove.
splices Replace the removed image list with this list.
exception Return any errors or warnings in this structure.

21 C API Methods 139

PrependImageToList() add an image list to the beginning of the specified list.

unsigned int *PrependImageToList(Image **images, const Image *image,
ExceptionInfo *exception)

PrependImageToList() adds an image list to the beginning of the specified image
list.

A description of each parameter follows:

images The image list.
image The image list to be added.
exception Return any errors or warnings in this structure.

21.4 Methods to Count the Colors in an Image

CompressColormap() remove duplicate or unused colormap entries.

void CompressColormap(Image *image)

CompressColormap() compresses an image colormap by removing any dupli-
cate or unused color entries.

A description of each parameter follows:

image The image.

GetNumberColors() count the number of unique colors.

unsigned long GetNumberColors(const Image *image, FILE *file, Excep-
tionInfo *exception)

GetNumberColors() returns the number of unique colors in an image.

A description of each parameter follows:

image The image.
file Write a histogram of the color distribution to this file handle.
exception Return any errors or warnings in this structure.

140 ImageMagick

IsGrayImage() is the image grayscale?

unsigned int IsGrayImage(Image *image, ExceptionInfo *exception)

IsGrayImage() returns True if all the pixels in the image have the same red,
green, and blue intensities.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

IsMonochromeImage() is the image monochrome?

unsigned int IsMonochromeImage(Image *image, ExceptionInfo *excep-
tion)

IsMonochromeImage() returns True if all the pixels in the image have the same
red, green, and blue intensities and the intensity is either 0 or MaxRGB.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

IsOpaqueImage() does the image have transparent pixels?

unsigned int IsOpaqueImage(Image *image, ExceptionInfo *exception)

IsOpaqueImage() returns True if none of the pixels in the image have an opacity
value other than opaque (0).

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

IsPaletteImage() does the image have less than 256 unique colors?

unsigned int IsPaletteImage(Image *image, ExceptionInfo *exception)

IsPaletteImage() returns True if the image is colormapped and has 256 unique
colors or less.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

21 C API Methods 141

ListColorsInfo list color names.

unsigned int ListColorInfo(FILE *file, ExceptionInfo *exception)

ListColorInfo() lists color names to the specified file. Color names are a conve-
nience. Rather than defining a color by its red, green, and blue intensities just
use a color name such aswhite , blue , or yellow .

A description of each parameter follows:

file List color names to this file handle.
exception Return any errors or warnings in this structure.

QueryColorDatabase() return numerical values corresponding to a color name.

unsigned int QueryColorDatabase(const char *name, PixelPacket *color,
ExceptionInfo *exception)

QueryColorDatabase() returns the red, green, blue, and opacity intensities for a
given color name.

A description of each parameter follows:

name The color name (e.g. white, blue, yellow).
color The red, green, blue, and opacity intensities values of the named color in

this structure.
exception Return any errors or warnings in this structure.

QueryColorname() return a color name for the corresponding numerical values.

unsigned int QueryColorname(const Image *image, const PixelPacket *color,
ComplianceType compliance, char *name, ExceptionInfo *exception)

QueryColorname() returns a named color for the given color intensity. If an exact
match is not found, a hex value is return instead. For example an intensity of
rgb:(0,0,0) returnsblack whereas rgb:(223,223,223) returns #dfdfdf.

A description of each parameter follows:

image The image.
color The color intensities.
compliance Adhere to this color standard: SVG or X11.
name Return the color name or hex value.
exception Return any errors or warnings in this structure.

142 ImageMagick

21.5 Methods to Reduce the Number of Unique
Colors in an Image

CloneQuantizeInfo()

QuantizeInfo *CloneQuantizeInfo(const QuantizeInfo *quantizeinfo)

Method CloneQuantizeInfo() makes a duplicate of the given quantize info struc-
ture, or if quantize info is NULL, a new one. A description of each parameter
follows:

quantize info a structure of type info.

DestroyQuantizeInfo()

DestroyQuantizeInfo(QuantizeInfo *quantizeinfo)

Method DestroyQuantizeInfo() deallocates memory associated with an Quan-
tizeInfo structure.

A description of each parameter follows:

quantize info Specifies a pointer to an QuantizeInfo structure.

GetQuantizeInfo()

GetQuantizeInfo(QuantizeInfo *quantizeinfo)

Method GetQuantizeInfo() initializes the QuantizeInfo structure.

A description of each parameter follows:

quantize info Specifies a pointer to a QuantizeInfo structure.

MapImage()

unsigned int MapImage(Image *image, Image *mapimage, const unsigned
int dither)

MapImage replaces the colors of an image with the closest color from a reference
image.

A description of each parameter follows:

image The image.
map image Specifies a pointer to a Image structure. Reduce image to a set of

colors represented by this image.
dither Set this integer value to something other than zero to dither the quantized

image.

21 C API Methods 143

MapImages()

unsigned int MapImages(Image *images, Image *mapimage, const un-
signed int dither)

MapImages replaces the colors of a sequence of images with the closest color
from a reference image.

A description of each parameter follows:

image The image.
map image Specifies a pointer to a Image structure. Reduce image to a set of

colors represented by this image.
dither Set this integer value to something other than zero to dither the quantized

image.

GetImageQuantizeError()

unsigned int GetImageQuantizeError(Image *image)

Method GetImageQuantizeError() measures the difference between the original
and quantized images. This difference is the total quantization error. The error is
computed by summing over all pixels in an image the distance squared in RGB
space between each reference pixel value and its quantized value. These values
are computed:

A description of each parameter follows:

mean error per pixel This value is the mean error for any single pixel in the
image.

normalized mean square error This value is the normalized mean quantiza-
tion error for any single pixel in the image. This distance measure is nor-
malized to a range between 0 and 1. It is independent of the range of red,
green, and blue values in the image.

normalized maximum square error This value is the normalized maximum
quantization error for any single pixel in the image. This distance measure
is normalized to a range between 0 and 1. It is independent of the range of
red, green, and blue values in your image.

A description of each parameter follows:

image The image.

144 ImageMagick

QuantizeImage()

unsigned int QuantizeImage(const QuantizeInfo *quantizeinfo, Image *im-
age)

Method QuantizeImage() analyzes the colors within a reference image and chooses
a fixed number of colors to represent the image. The goal of the algorithm is to
minimize the difference between the input and output image while minimizing
the processing time.

A description of each parameter follows:

quantize info Specifies a pointer to an QuantizeInfo structure.
image Specifies a pointer to a Image structure.

QuantizeImages()

unsigned int QuantizeImages(const QuantizeInfo *quantizeinfo, Image *im-
ages)

QuantizeImages analyzes the colors within a set of reference images and chooses
a fixed number of colors to represent the set. The goal of the algorithm is to
minimize the difference between the input and output images while minimizing
the processing time.

A description of each parameter follows:

quantize info Specifies a pointer to an QuantizeInfo structure.
images Specifies a pointer to a list of Image structures.

21.6 Methods to Segment an Image with
Thresholding Fuzzy c-Means

SegmentImage()

unsigned int SegmentImage(Image *image, const ColorspaceType colorspace,
const unsigned int verbose, const double clusterthreshold, const double
smoothingthreshold)

Method SegmentImage() segments an image by analyzing the histograms of the
color components and identifying units that are homogeneous with the fuzzy
c-means technique.

Specify cluster threshold as the number of pixels in each cluster must exceed
the the cluster threshold to be considered valid. Smoothing threshold eliminates

21 C API Methods 145

noise in the second derivative of the histogram. As the value is increased, you
can expect a smoother second derivative. The default is 1.5.

A description of each parameter follows:

image Specifies a pointer to an Image structure returned from ReadImage.
colorspace An unsigned integer value that indicates the colorspace. Empirical

evidence suggests that distances in YUV or YIQ correspond to perceptual
color differences more closely than do distances in RGB space. The image
is then returned to RGB colorspace after color reduction.

verbose A value greater than zero prints detailed information about the identi-
fied classes.

21.7 Methods to Resize an Image

MagnifyImage() scale the image to twice its size.

Image *MagnifyImage(image, ExceptionInfo *exception)

MagnifyImage() is a convenience method that scales an image proportionally to
twice its size.

image The image.
exception Return any errors or warnings in this structure.

MinifyImage() scale the image to half its size.

Image *MinifyImage(Image *image, ExceptionInfo *exception)

MinifyImage() is a convenience method that scales an image proportionally to
half its size.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

ResizeImage() scale an image with a filter.

Image *ResizeImage(Image *image, const unsigned long columns, const
unsigned long rows, const FilterType filter, const double blur, Excep-
tionInfo *exception)

146 ImageMagick

ResizeImage() scales an image to the desired dimensions with one of these fil-
ters:

Bessel Blackman Box
Catrom Cubic Gaussian
Hanning Hermite Lanczos
Mitchell Point Quadratic
Sinc Triangle

A description of each parameter follows:

image The image.
columns The number of columns in the scaled image.
rows The number of rows in the scaled image.
filter Image filter to use.
blur The blur factor where ¿ 1 is blurry, ¡ 1 is sharp.
exception Return any errors or warnings in this structure.

SampleImage()

Image *SampleImage(Image *image, const unsigned long columns, const
unsigned long rows, ExceptionInfo *exception)

SampleImage() scales an image to the desired dimensions with pixel sampling.
Unlike other scaling methods, this method does not introduce any additional
color into the scaled image.

A description of each parameter follows:

image The image.
columns The number of columns in the sampled image.
rows The number of rows in the sampled image.
exception Return any errors or warnings in this structure.

ScaleImage() scale an image to given dimensions.

Image *ScaleImage(Image *image, const unsigned long columns, const un-
signed long rows, ExceptionInfo *exception)

ScaleImage() changes the size of an image to the given dimensions.

A description of each parameter follows:

image The image.
columns The number of columns in the scaled image.
rows The number of rows in the scaled image.
exception Return any errors or warnings in this structure.

21 C API Methods 147

21.8 Methods to Transform an Image

ChopImage() chop an image.

Image *ChopImage(Image *image, const RectangleInfo *chopinfo, Ex-
ceptionInfo *exception)

Chop() removes a region of an image and collapses the image to occupy the
removed portion.

A description of each parameter follows:

image The image.
chop info Define the region of the image to chop with membersx , y , width ,

andheight . If the image gravity isNortheast , East , or SouthEast ,
the offsetx specifies the distance from the right edge of the region to the
right edge of the chopping region. Similarly, if the image gravity isSouthEast ,
South , or SouthWest , y is the distance between the bottom edges.

exception Return any errors or warnings in this structure.

CoalesceImages() coalesce a set of images.

Image *CoalesceImages(Image *image, ExceptionInfo *exception)

CoalesceImages() composites a set of images while respecting any page offsets
and disposal methods. GIF, MIFF, and MNG animation sequences typically start
with an image background and each subsequent image varies in size and offset.
Coalesce() returns a new sequence where each image in the sequence is the same
size as the first and composited over the previous images in the sequence.

Offsets are measured from the top left corner of the composition to the top left
corner of each image. Positive offsets represent a location of the image to the
right and downward from the corner of the composition.

A description of each parameter follows:

image The image sequence.
exception Return any errors or warnings in this structure.

CropImage() crop an image.

Image *CropImage(Image *image, const RectangleInfo *cropinfo, Excep-
tionInfo *exception)

148 ImageMagick

Use CropImage() to extract a region of the image starting at the offset defined
by crop info .

A description of each parameter follows:

image The image.
crop info Define the region of the image to crop with membersx , y , width ,

andheight . If the image gravity isNortheast , East , or SouthEast ,
the offsetx specifies the distance from the right edge of the region to the
right edge of the cropping region. Similarly, if the image gravity isSouthEast ,
South , or SouthWest , y is the distance between the bottom edges. If the
offsetx is negative, it specifies the distance from the right edge of the region
to the right edge of the chopping region.

exception Return any errors or warnings in this structure.

DeconstructImages() return the constituent parts of an image sequence

Image *DeconstructImages(Image *image, ExceptionInfo *exception)

DeconstructImages() compares each image with the next in a sequence and re-
turns the maximum bounding region of any pixel differences it discovers. This
method can undo a coalesced sequence returned by CoalesceImages(), and is
useful for removing redundant information from a GIF or MNG animation.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

FlipImage() reflect an image vertically.

Image *FlipImage(Image *image, ExceptionInfo *exception)

FlipImage() creates a vertical mirror image by reflecting the pixels around the
central x-axis.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

FlopImage() reflect an image horizontally.

Image *FlopImage(Image *image, ExceptionInfo *exception)

21 C API Methods 149

FlopImage() creates a horizontal mirror image by reflecting the pixels around
the central y-axis.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

MosaicImages() inlay an image sequence to form a single coherent picture.

Image *MosaicImages(const Image *image, ExceptionInfo *exception)

MosaicImages() inlays an image sequence to form a single coherent picture.
It returns a single image with each image in the sequence composited at the
location defined by thepage member ofimage .

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

RollImage() offset and roll over an image.

Image *RollImage(Image *image, const int xoffset, const int yoffset, Ex-
ceptionInfo *exception)

RollImage() offsets an image as defined byx offset andy offset .

A description of each parameter follows:

image The image.
x offset The number of columns to roll in the horizontal direction, right-to-left

(left-to-right if x offset is negative).
y offset The number of rows to roll in the vertical direction, bottom-to-top (top-

to-bottom if y offset is negative).
exception Return any errors or warnings in this structure.

ShaveImage()

Image *ShaveImage(const Image *image, const RectangleInfo *shaveinfo,
ExceptionInfo *exception)

Method ShaveImage() shaves pixels from the image edges. It allocates the mem-
ory necessary for the new Image structure and returns a pointer to the new image.

A description of each parameter follows:

150 ImageMagick

image The image.
shaveinfo Specifies a pointer to a structure of type Rectangle which defines the

shave region.
exception Return any errors or warnings in this structure.

TransformImage() resize or crop an image.

void TransformImage(Image **image, const char *cropgeometry, const
char *imagegeometry)

TransformImage() is a convenience method that behaves like ResizeImage() or
CropImage() but accepts scaling and/or cropping information as a region geom-
etry specification. If the operation fails, the original image handle is returned.

A description of each parameter follows:

image The image. The transformed image is returned as this parameter.
crop geometry A crop geometry string. This geometry defines a subregion of

the image to crop.
image geometry An image geometry string. This geometry defines the final

size of the image.

21.9 Methods to Shear or Rotate an Image by an
Arbitrary Angle

RotateImage

Image *RotateImage(Image *image, const double degrees, ExceptionInfo
*exception)

Method RotateImage() creates a new image that is a rotated copy of an existing
one. Positive angles rotate counter-clockwise(right-hand rule), while negative
angles rotate clockwise. Rotated images are usually larger than the originals and
have ’empty’ triangular corners. X axis. Empty triangles left over from shear-
ing the image are filled with the color defined by the pixel at location(0, 0).
RotateImage allocates the memory necessary for the new Image structure and
returns a pointer to the new image.

Method RotateImage() is based on the paper ”A Fast Algorithm for General
Raster Rotatation” by Alan W. Paeth. RotateImage is adapted from a similar
method based on the Paeth paper written by Michael Halle of the Spatial Imaging
Group, MIT Media Lab.

A description of each parameter follows:

image The image.
degreesSpecifies the number of degrees to rotate the image.
exception Return any errors or warnings in this structure.

21 C API Methods 151

ShearImage()

Image *ShearImage(Image *image, const double xshear, const double yshear,
ExceptionInfo *exception)

Method ShearImage() creates a new image that is a shearimage copy of an ex-
isting one. Shearing slides one edge of an image along the X or Y axis, creating
a parallelogram. An X direction shear slides an edge along the X axis, while a
Y direction shear slides an edge along the Y axis. The amount of the shear is
controlled by a shear angle. For X direction shears, xshear is measured relative
to the Y axis, and similarly, for Y direction shears yshear is measured relative
to the X axis. Empty triangles left over from shearing the image are filled with
the color defined by the pixel at location(0, 0). ShearImage allocates the memory
necessary for the new Image structure and returns a pointer to the new image.

Method ShearImage() is based on the paper ”A Fast Algorithm for General
Raster Rotatation” by Alan W. Paeth.

A description of each parameter follows:

image The image.
x shear, y shear Specifies the number of degrees to shear the image.
exception Return any errors or warnings in this structure.

21.10 Methods to Enhance an Image

ContrastImage() enhance or reduce the image contrast.

unsigned int ContrastImage(Image *image, const unsigned int sharpen)

Contrast() enhances the intensity differences between the lighter and darker ele-
ments of the image. Setsharpen to a value other than 0 to increase the image
contrast otherwise the contrast is reduced.

A description of each parameter follows:

image The image.
sharpen Increase or decrease image contrast.

EqualizeImage() equalize an image.

unsigned int EqualizeImage(Image *image)

EqualizeImage() applies a histogram equalization to the image.

A description of each parameter follows:

image The image.

152 ImageMagick

GammaImage() gamma-correct the image.

unsigned int GammaImage(Image *image, const char *gamma)

Use GammaImage() to gamma-correct an image. The same image viewed on
different devices will have perceptual differences in the way the image’s intensi-
ties are represented on the screen. Specify individual gamma levels for the red,
green, and blue channels, or adjust all three with thegammaparameter. Values
typically range from 0.8 to 2.3.

You can also reduce the influence of a particular channel with a gamma value of
0.

A description of each parameter follows:

image The image.
gamma Define the level of gamma correction.

LevelImage() adjust the level of image contrast.

unsigned int LevelImage(Image *image, const char *levels)

Give three values delineated with commas: black, gamma, and white (e.g. 10,1.0,65000
or 2,0.5,980 to MaxRGB or from 0 to 100from 0.1 to 10. If a ”is present, the
black and white points are percentages of MaxRGB.

A description of each parameter follows:

image The image.
levels Define the image black and white levels and gamma.

ModulateImage() adjust the brightness, saturation, and hue.

unsigned int ModulateImage(Image *image, const char *modulate)

ModulateImage() lets you control the brightness, saturation, and hue of an im-
age.Modulate represents the brightness, saturation, and hue as one parameter
(e.g. 90,150,100).

A description of each parameter follows:

image The image.
modulate Define the percent change in brightness, saturation, and hue.

21 C API Methods 153

NormalizeImage() enhance image contrast.

unsigned int NormalizeImage(Image *image)

The NormalizeImage() method enhances the contrast of a color image by adjust-
ing the pixels color to span the entire range of colors available.

A description of each parameter follows:

image The image.

21.11 ImageMagick Image Effects Methods

AddNoiseImage() add noise to an image.

Image *AddNoiseImage(const Image *image, const NoiseType noisetype,
ExceptionInfo *exception)

AddNoiseImage() adds random noise to the image.

A description of each parameter follows:

image The image.
noise type The type of noise: Uniform, Gaussian, Multiplicative, Impulse, Lapla-

cian, or Poisson.
exception Return any errors or warnings in this structure.

BlurImage() blur the image.

Image *BlurImage(const Image *image, const double radius, const double
sigma, ExceptionInfo *exception)

BlurImage() blurs an image. We convolve the image with a Gaussian operator
of the given radius and standard deviation (sigma). For reasonable results, the
radius should be larger than sigma. Use a radius of 0 and BlurImage() selects a
suitable radius for you.

A description of each parameter follows:

radius The radius of the Gaussian, in pixels, not counting the center pixel.
sigma The standard deviation of the Gaussian, in pixels.
exception Return any errors or warnings in this structure.

154 ImageMagick

ColorizeImage() colorize an image.

Image *ColorizeImage(const Image *image, const char *opacity, const Pix-
elPacket target, ExceptionInfo *exception)

ColorizeImage() blends the fill color with each pixel in the image. A percentage
blend is specified withopacity . Control the application of different color com-
ponents by specifying a different percentage for each component (e.g. 90/100/10
is 90% red, 100% green, and 10% blue).

A description of each parameter follows:

image The image.
opacity A character string indicating the level of opacity as a percentage.
target A color value.
exception Return any errors or warnings in this structure.

ConvolveImage() apply a convolution kernel to the image.

Image *ConvolveImage(const Image *image, const unsigned int order, const
double *kernel, ExceptionInfo *exception)

ConvolveImage() applies a custom convolution kernel to the image.

A description of each parameter follows:

image The image.
order The number of columns and rows in the filter kernel.
kernel An array of double representing the convolution kernel.
exception Return any errors or warnings in this structure.

DespeckleImage() filter speckles.

Image *DespeckleImage(const Image *image, ExceptionInfo *exception)

DespeckleImage() reduces thespecklenoise in an image while perserving the
edges of the original image.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

21 C API Methods 155

EdgeImage() detect edges within an image.

Image *EdgeImage(const Image *image, const double radius, Exception-
Info *exception)

EdgeImage() finds edges in an image.Radius defines the radius of the convo-
lution filter. Use a radius of 0 and Edge() selects a suitable radius for you.

A description of each parameter follows:

image The image.
radius the radius of the pixel neighborhood.
exception Return any errors or warnings in this structure.

EmbossImage emboss the image.

Image *EmbossImage(const Image *image, const double radius, const dou-
ble sigma, ExceptionInfo *exception)

EmbossImage() returns a grayscale image with a three-dimensional effect. We
convolve the image with a Gaussian operator of the given radius and standard
deviation (sigma). For reasonable results, radius should be larger than sigma.
Use a radius of 0 and Emboss() selects a suitable radius for you.

A description of each parameter follows:

image The image.
radius the radius of the pixel neighborhood.
sigma The standard deviation of the Gaussian, in pixels.
exception Return any errors or warnings in this structure.

EnhanceImage() filter a noisy image.

Image *EnhanceImage(const Image *image, ExceptionInfo *exception)

EnhanceImage() applies a digital filter that improves the quality of a noisy im-
age.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

156 ImageMagick

GaussianBlurImage() blur an image.

Image *GaussianBlurImage(const Image *image, const double radius, const
double sigma, ExceptionInfo *exception)

GaussianBlurImage() blurs an image. We convolve the image with a Gaussian
operator of the given radius and standard deviation (sigma). For reasonable re-
sults, the radius should be larger than sigma. Use a radius of 0 and Gaussian-
BlurImage() selects a suitable radius for you.

A description of each parameter follows:

image The image.
radius the radius of the Gaussian, in pixels, not counting the center pixel.
sigma the standard deviation of the Gaussian, in pixels.
exception Return any errors or warnings in this structure.

ImplodeImage() apply an implosion/explosion filter.

Image *ImplodeImage(const Image *image, const double amount, Excep-
tionInfo *exception)

ImplodeImage() applies a special effects filter to the image whereamount de-
termines the amount of implosion. Use a negative amount for an explosive effect.

A description of each parameter follows:

image The image.
amount Define the extent of the implosion.
exception Return any errors or warnings in this structure.

MedianFilterImage() filter a noisy image.

Image *MedianFilterImage(const Image *image, const double radius, Ex-
ceptionInfo *exception)

MedianFilterImage() applies a digital filter that improves the quality of a noisy
image. Each pixel is replaced by the median in a set of neighboring pixels as
defined byradius .

A description of each parameter follows:

image The image.
radius The radius of the pixel neighborhood.
exception Return any errors or warnings in this structure.

21 C API Methods 157

MorphImages() morph a set of images.

Image *MorphImages(const Image *image, const unsigned long numberframes,
ExceptionInfo *exception)

The MorphImages() method requires a minimum of two images. The first image
is transformed into the second by a number of intervening images as specified
by frames .

A description of each parameter follows:

image The image.
number frames Define the number of in-between image to generate. The more

in-between frames, the smoother the morph.
exception Return any errors or warnings in this structure.

MotionBlurImage() simulate motion blur.

Image *MotionBlurImage(const Image *image, const double radius, const
double sigma, ExceptionInfo *exception)

MotionBlurImage() simulates motion blur. We convolve the image with a Gaus-
sian operator of the given radius and standard deviation (sigma). For reasonable
results, radius should be larger than sigma. Use a radius of 0 and MotionBlurIm-
age()selects a suitable radius for you.Angle gives the angle of the blurring
motion.

A description of each parameter follows:

image The image.
radius The radius of the Gaussian, in pixels, not counting the center pixel.
sigma The standard deviation of the Motion, in pixels.
angle Apply the effect along this angle.
exception Return any errors or warnings in this structure.

NegateImage()

unsigned int NegateImage(Image *image, const unsigned int grayscale)

Method NegateImage() negates the colors in the reference image. The Grayscale
option means that only grayscale values within the image are negated.

A description of each parameter follows:

image The image.

158 ImageMagick

OilPaintImage() simulate an oil painting.

Image *OilPaintImage(const Image *image, const double radius, Excep-
tionInfo *exception)

OilPaintImage() applies a special effect filter that simulates an oil painting. Each
pixel is replaced by the most frequent color occurring in a circular region defined
by radius .

A description of each parameter follows:

image The image.
radius The radius of the circular neighborhood.
exception Return any errors or warnings in this structure.

PlasmaImage() initialize an image with plasma fractal values.

unsigned int PlasmaImage(const Image *image, const SegmentInfo *seg-
ment, int attenuate, int depth)

PlasmaImage() initializes an image with plasma fractal values. The image must
be initialized with a base color and the random number generator seeded before
this method is called.

A description of each parameter follows:

image The image.
segment Define the region to apply plasma fractals values.
attenuate Define the plasma attenuation factor.
depth Limit the plasma recursion depth.

ReduceNoiseImage() smooth an image.

Image *ReduceNoiseImage(Image *image, const double radius, Exception-
Info *exception)

ReduceNoiseImage() smooths the contours of an image while still preserving
edge information. The algorithm works by replacing each pixel with its neigh-
bor closest in value. A neighbor is defined byradius . Use a radius of 0 and
ReduceNoise() selects a suitable radius for you.

A description of each parameter follows:

image The image.
radius The radius of the pixel neighborhood.
exception Return any errors or warnings in this structure.

21 C API Methods 159

ShadeImage shade the image with light source.

Image *ShadeImage(const Image *image, const unsigned int colorshading,
double azimuth, double elevation, ExceptionInfo *exception)

ShadeImage() shines a distant light on an image to create a three-dimensional
effect. You control the positioning of the light withazimuthandelevation; az-
imuth is measured in degrees off the x axis and elevation is measured in pixels
above the Z axis.

A description of each parameter follows:

image The image.
color shading A value other than zero shades the red, green, and blue compo-

nents of the image.
azimuth, elevation Define the light source direction.
exception Return any errors or warnings in this structure.

SharpenImage() sharpen an image.

Image *SharpenImage(Image *image, const double radius, const double
sigma, ExceptionInfo *exception)

SharpenImage() sharpens an image. We convolve the image with a Gaussian op-
erator of the given radius and standard deviation (sigma). For reasonable results,
radius should be larger than sigma. Use a radius of 0 and SharpenImage() selects
a suitable radius for you.

A description of each parameter follows:

radius The radius of the Gaussian, in pixels, not counting the center pixel.
sigma The standard deviation of the Laplacian, in pixels.
exception Return any errors or warnings in this structure.

SolarizeImage() apply solorization special effect.

void SolarizeImage(Image *image, const double threshold)

SolarizeImage() applies a special effect to the image, similar to the effect achieved
in a photo darkroom by selectively exposing areas of photo sensitive paper to
light. Threshold ranges from 0 to MaxRGB and is a measure of the extent of
the solarization.

A description of each parameter follows:

image The image.
threshold Define the extent of the solarization.

160 ImageMagick

SpreadImage() randomly displace pixels.

Image *SpreadImage(const Image *image, const unsigned int amount, Ex-
ceptionInfo *exception)

SpreadImage() is a special effects method that randomly displaces each pixel in
a block defined by the amount parameter.

A description of each parameter follows:

image The image.
radius An unsigned value constraining the ”vicinity” for choosing a random

pixel to swap.
exception Return any errors or warnings in this structure.

SteganoImage() hide a digital watermark.

Image *SteganoImage(const Image *image, Image *watermark, Exception-
Info *exception)

Use SteganoImage() to hide a digital watermark within the image. Recover the
hidden watermark later to prove that the authenticity of an image. textttOffset
defines the start position within the image to hide the watermark.

A description of each parameter follows:

image The image.
watermark The watermark image.
exception Return any errors or warnings in this structure.

StereoImage() create a stereo special effect.

Image *StereoImage(cosnt Image *image, Image *offsetimage, Exception-
Info *exception)

StereoImage() combines two images and produces a single image that is the
composite of a left and right image of a stereo pair. Special red-green stereo
glasses are required to view this effect.

A description of each parameter follows:

image The left-hand image.
offset image The right-hand image.
exception Return any errors or warnings in this structure.

21 C API Methods 161

SwirlImage() swirl pixels about image center.

Image *SwirlImage(const Image *image, double degrees, ExceptionInfo
*exception)

SwirlImage() swirls the pixels about the center of the image, wheredegrees
indicates the sweep of the arc through which each pixel is moved. You get a
more dramatic effect as the degrees move from 1 to 360.

A description of each parameter follows:

image The image.
degreesDefine the tightness of the swirling effect.
exception Return any errors or warnings in this structure.

ThresholdImage() divide pixels based on intensity values.

unsigned int ThresholdImage(Image *image, const double threshold)

ThresholdImage() changes the value of individual pixels based on the intensity
of each pixel compared tothreshold . The result is a high-contrast, two color
image.

A description of each parameter follows:

image The image.
threshold Define the threshold value.

UnsharpMaskImage() sharpen an image.

Image *UnsharpMaskImage(const Image *image, const double radius, const
double sigma, const double amount, const double threshold, Exception-
Info *exception)

UnsharpMaskImage() sharpens an image. We convolve the image with a Gaus-
sian operator of the given radius and standard deviation (sigma). For reason-
able results, radius should be larger than sigma. Use a radius of 0 and Unsharp-
MaskImage() selects a suitable radius for you.

A description of each parameter follows:

image The image.
radius The radius of the Gaussian, in pixels, not counting the center pixel.
sigma The standard deviation of the Gaussian, in pixels.
amount The percentage of the difference between the original and the blur im-

age that is added back into the original.
threshold The threshold, as a fraction of MaxRGB, needed to apply the differ-

ence amount.
exception Return any errors or warnings in this structure.

162 ImageMagick

WaveImage() special effects filter.

Image *WaveImage(const Image *image, const double amplitude, const
double wavelength, ExceptionInfo *exception)

The WaveImage() filter creates a ”ripple” effect in the image by shifting the
pixels vertically along a sine wave whose amplitude and wavelength is specified
by the given parameters.

A description of each parameter follows:

image The image.
amplitude, frequency Define the amplitude and wavelength of the sine wave.
exception Return any errors or warnings in this structure.

21.12 ImageMagick Image Decoration Methods

BorderImage() frame the image with a border.

Image *BorderImage(const Image *image, const RectangleInfo *borderinfo,
ExceptionInfo *exception)

BorderImage() surrounds the image with a border of the color defined by the
border color member of theimage structure. The width and height of the
border are defined by the corresponding members of theborder info struc-
ture.

A description of each parameter follows:

image The image.
border info Define the width and height of the border.
exception Return any errors or warnings in this structure.

FrameImage() surround the image with a decorative border.

Image *FrameImage(const Image *image, const FrameInfo *frameinfo,
ExceptionInfo *exception)

FrameImage() adds a simulated three-dimensional border around the image. The
color of the border is defined by thematte color member ofimage . Mem-
berswidth andheight of frame info specify the border width of the ver-
tical and horizontal sides of the frame. Membersinner andouter indicate
the width of the inner and outershadows of the frame.

A description of each parameter follows:

21 C API Methods 163

image The image.
frame info Define the width and height of the frame and its bevels.
exception Return any errors or warnings in this structure.

RaiseImage() lighten or darken edges to create a 3-D effect.

unsigned int RaiseImage(Image *image, const RectangleInfo *raiseinfo,
const int raised)

RaiseImage() creates a simulated three-dimensional button-like effect by light-
ening and darkening the edges of the image. Memberswidth andheight of
raise info define the width of the vertical and horizontal edge of the effect.

A description of each parameter follows:

image The image.
raise info Define the width and height of the raised area. region.
raised A value other than zero creates a 3-D raised effect, otherwise it has a

lowered effect.

21.13 Methods to Annotate an Image

AnnotateImage() annotate an image with text.

unsigned int AnnotateImage(Image *image, DrawInfo *drawinfo)

Annotate() allows you to scribble text across an image. The text may be repre-
sented as a string or filename. Precede the filename with an “at” sign (@) and the
contents of the file are drawn on the image. Your text can optionally embed any
of these special characters:

%b file size in bytes.
%c comment.
%d directory in which the image resides.
%e extension of the image file.
%f original filename of the image.
%h height of image.
%i filename of the image.
%k number of unique colors.
%l image label.
%m image file format.
%n number of images in a image sequence.
%o output image filename.

164 ImageMagick

%p page number of the image.
%q image depth (8 or 16).
%s image scene number.
%t image filename without any extension.
%u a unique temporary filename.
%w image width.
%x x resolution of the image.
%y y resolution of the image.

A description of each parameter follows:

image The image.
draw info The draw info.

GetTypeMetrics() get font attributes.

unsigned int GetTypeMetrics(Image *image, const DrawInfo *drawinfo,
TypeMetric *metrics)

GetTypeMetrics() returns the following information for the supplied font and
text:

• character width
• character height
• ascender
• descender
• text width
• text height
• maximum horizontal advance

A description of each parameter follows:

image The image.
draw info The draw info.
metrics Return the font metrics in this structure.

21.14 Methods to Draw on an Image

CloneDrawInfo clone a draw info structure.

DrawInfo *CloneDrawInfo(const ImageInfo *imageinfo, const DrawInfo
*draw info)

21 C API Methods 165

CloneDrawInfo() makes a copy of the given draw info structure. If NULL is
specified, a new image info structure is created initialized to default values.

A description of each parameter follows:

image info The image info.
draw info The draw info.

ColorFloodfillImage() floodfill the designed area with color.

unsigned int ColorFloodfillImage(Image *image, const DrawInfo *drawinfo,
const PixelPacket target, const long x, const long y, const PaintMethod
method)

ColorFloodfill() changes the color value of any pixel that matchestarget and
is an immediate neighbor. If the methodFillToBorderMethod is speci-
fied, the color value is changed for any neighbor pixel that does not match the
bordercolor member ofimage .

By default target must match a particular pixel color exactly. However, in
many cases two colors may differ by a small amount. Thefuzz member of
image defines how much tolerance is acceptable to consider two colors as the
same. For example, set fuzz to 10 and the color red at intensities of 100 and
102 respectively are now interpreted as the same color for the purposes of the
floodfill.

A description of each parameter follows:

image The image.
draw info The draw info.
target The RGB value of the target color.
x, y The starting location of the operation.
method Choose eitherFloodfillMethod or FillToBorderMethod .

DestroyDrawInfo() destroy draw info.

void DestroyDrawInfo(DrawInfo *drawinfo)

DestroyDrawInfo() deallocates memory associated withdraw info .

A description of each parameter follows:

draw info The draw info.

166 ImageMagick

DrawImage annotate an image with a graphic primitive.

unsigned int DrawImage(Image *image, const DrawInfo *drawinfo)

Use DrawImage() to draw a graphic primitive on your image. The primitive may
be represented as a string or filename. Precede the filename with an “at” sign (@)
and the contents of the file are drawn on the image. You can affect how text is
drawn by setting one or more members of the draw info structure:

primitive The primitive describes the type of graphic to draw. Choose from
these primitives:

PointPrimitive LinePrimitive RectanglePrimitive
roundRectanglePrimitive ArcPrimitive EllipsePrimitive
CirclePrimitive PolylinePrimitive PolygonPrimitive
BezierPrimitive PathPrimitive ColorPrimitive
MattePrimitive TextPrimitive ImagePrimitive

antialias The visible effect of antialias is to smooth out the rounded corners of
the drawn shape. Set to 0 to keep crisp edges.

bordercolor The Color primitive with a method of FloodFill changes the color
value of any pixel that matchesfill and is an immediate neighbor. If
bordercolor is specified, the color value is changed for any neighbor
pixel that is notfill .

density This parameter sets the vertical and horizontal resolution of the font.
The default is 72 pixels/inch.

fill The fill color paints any areas inside the outline of drawn shape.
font A font can be a Truetype (arial.ttf), Postscript (Helvetica), or a fully-qualified

X11 font (-*-helvetica-medium-r-*-*-12-*-*-*-*-*-iso8859-*).
geometry Geometry defines the baseline position where the graphic primitive

is rendered (e.g. +100+50).
method Primitives Matte and Image behavior depends on the painting method

you choose:

Point Replace Floodfull
FillToBorder Reset

points List one or more sets of coordinates as required by the graphic primitive
you selected.

pointsize The font pointsize. The default is 12.
rotate Specifies a rotation ofrotate-angledegrees about a given point.
scale Specifies a scale operation bysxandsy.
skewX Specifies a skew transformation along the x-axis.
skewY Specifies a skew transformation along the y-axis.
stroke A stroke color paints along the outline of the shape.
stroke width The width of the stroke of the shape. A zero value means no

stroke is painted.

21 C API Methods 167

translate Specifies a translation bytx andty.

A description of each parameter follows:

image The image.
draw info The draw info.

MatteFloodfillImage() floodfill an area with transparency.

unsigned int MatteFloodfillImage(Image *image, const PixelPacket target,
const unsigned int opacity, const long x, const long y, const PaintMethod
method)

MatteFloodfill() changes the transparency value of any pixel that matchestarget
and is an immediate neighbor. If the methodFillToBorderMethod is spec-
ified, the transparency value is changed for any neighbor pixel that does not
match thebordercolor member ofimage .

By default target must match a particular pixel transparency exactly. How-
ever, in many cases two transparency values may differ by a small amount. The
fuzz member ofimage defines how much tolerance is acceptable to consider
two transparency values as the same. For example, set fuzz to 10 and the opacity
values of 100 and 102 respectively are now interpreted as the same value for the
purposes of the floodfill.

A description of each parameter follows:

image The image.
target The RGB value of the target color.
opacity The level of transparency: 0 is fully opaque and MaxRGB is fully trans-

parent.
x, y The starting location of the operation.
method Choose eitherFloodfillMethod or FillToBorderMethod .

OpaqueImage globally change a color.

unsigned int OpaqueImage(Image *image, const PixelPacket target, const
PixelPacket fill)

OpaqueImage() changes any pixel that matchescolor with the color defined
by fill .

By defaultcolor must match a particular pixel color exactly. However, in many
cases two colors may differ by a small amount.Fuzz defines how much toler-
ance is acceptable to consider two colors as the same. For example, set fuzz to 10

168 ImageMagick

and the color red at intensities of 100 and 102 respectively are now interpreted
as the same color.

A description of each parameter follows:

image The image.
target The RGB value of the target color.
fill The replacement color.

TransparentImage() make color transparent.

unsigned int TransparentImage(Image *image, const PixelPacket target,
const unsigned int opacity)

TransparentImage() changes the opacity value associated with any pixel that
matchescolor to the value defined byopacity .

By defaultcolor must match a particular pixel color exactly. However, in many
cases two colors may differ by a small amount.Fuzz defines how much toler-
ance is acceptable to consider two colors as the same. For example, set fuzz to 10
and the color red at intensities of 100 and 102 respectively are now interpreted
as the same color.

A description of each parameter follows:

image The image.
target The RGB value of the target color.
fill The replacement opacity value.

21.15 Methods to Create a Montage

CloneMontageInfo() clone a montage info structure.

MontageInfo *CloneMontageInfo(const ImageInfo *imageinfo, const Mon-
tageInfo *montageinfo)

CloneMontageInfo() makes a copy of the given montage info structure. If NULL
is specified, a new image info structure is created initialized to default values.

A description of each parameter follows:

image info The image info.
montage info The montage info.

21 C API Methods 169

DestroyMontageInfo() destroy montage info.

void DestroyMontageInfo(MontageInfo *montageinfo)

DestroyMontageInfo() deallocates memory associated withmontage info .

A description of each parameter follows:

montage info The montage info.

GetMontageInfo() get montage info.

void GetMontageInfo(const ImageInfo *imageinfo, MontageInfo *mon-
tageinfo)

GetMontageInfo() initializesmontage info to default values.

A description of each parameter follows:

image info The image info.
montage info The montage info.

MontageImages() uniformly tile thumbnails across an image canvas.

Image *MontageImages(const Image *image, const MontageInfo *mon-
tageinfo, ExceptionInfo *exception)

Montageimages() is a layout manager that lets you tile one or more thumbnails
across an image canvas.

A description of each parameter follows:

image The image.
montage info The montage info.
exception Return any errors or warnings in this structure.

21.16 Image Text Attributes Methods

DestroyImageAttributes() destroy an image attribute.

DestroyImageAttributes(Image *image)

DestroyImageAttributes() deallocates memory associated with the image attribute
list.

A description of each parameter follows:

image The image.

170 ImageMagick

GetImageAttribute() get an image attribute.

ImageAttribute *GetImageAttribute(const Image *image, const char *key)

GetImageAttribute() searches the list of image attributes and returns a pointer to
attribute if it exists otherwise NULL.

A description of each parameter follows:

image The image.
key These character strings are the name of an image attribute to return.

SetImageAttribute() set an image attribute.

unsigned int SetImageAttribute(Image *image, const char *key, const char
*value)

SetImageAttribute searches the list of image attributes and replaces the attribute
value. If it is not found in the list, the attribute name and value is added to the
list. If the attribute exists in the list, the value is concatenated to the attribute.
SetImageAttribute returns True if the attribute is successfully concatenated or
added to the list, otherwise False. If the value is NULL, the matching key is
deleted from the list.

A description of each parameter follows:

image The image.
key, value These character strings are the name and value of an image attribute

to replace or add to the list.

21.17 Methods to Compute a Digital Signature
for an Image

SignatureImage()

unsigned int SignatureImage(Image *image)

SignatureImage() computes a message digest from an image pixel stream with an
implementation of the NIST SHA-256 Message Digest algorithm. This signature
uniquely identifies the image and is convenient for determining whether two
images are identical.

A description of each parameter follows:

image The image.

21 C API Methods 171

21.18 Methods to Interactively Animate an Image
Sequence

XAnimateBackgroundImage

void XAnimateBackgroundImage(Display *display, XResourceInfo *resourceinfo,
Image *image)

XAnimateBackgroundImage() animates an image sequence in the background
of a window.

A description of each parameter follows:

display Specifies a connection to an X server returned from XOpenDisplay.
resource info Specifies a pointer to a X11 XResourceInfo structure.
image Specifies a pointer to a Image structure returned from ReadImage.

XAnimateImage animate an image in an X window.

Image *XAnimateImages(Display *display, XResourceInfo *resourceinfo,
char **argv, const int argc, Image *image)

XAnimateImages() displays an image via X11.

A description of each parameter follows:

display Specifies a connection to an X server returned from XOpenDisplay.
resource info Specifies a pointer to a X11 XResourceInfo structure.
argv Specifies the application’s argument list.
argc Specifies the number of arguments.
image Specifies a pointer to a Image structure returned from ReadImage.

21.19 Methods to Interactively Display and Edit
an Image

XDisplayBackgroundImage display an image to the background of an X window.

unsigned int XDisplayBackgroundImage(Display *display, XResourceInfo
*resourceinfo, Image *image)

XDisplayBackgroundImage() displays an image in the background of a window.

A description of each parameter follows:

display Specifies a connection to an X server returned from XOpenDisplay.
resource info Specifies a pointer to a X11 XResourceInfo structure.
image Specifies a pointer to a Image structure returned from ReadImage.

172 ImageMagick

XDisplayImage display an image on an X window.

Image *XDisplayImage(Display *display, XResourceInfo *resourceinfo,
char **argv, int argc, Image **image, unsigned long *state)

XDisplayImage() displays an image via X11. A new image is created and re-
turned if the user interactively transforms the displayed image.

A description of each parameter follows:

display Specifies a connection to an X server returned from XOpenDisplay.
resource info Specifies a pointer to a X11 XResourceInfo structure.
argv Specifies the application’s argument list.
argc Specifies the number of arguments.
image The image.

21.20 Methods to Get or Set Image Pixels

AcquirePixelCache() acquire image pixels.

PixelPacket *AcquirePixelCache(Image *image, const int x, const int y,
const unsigned long columns, const unsigned long rows, ExceptionInfo
*exception)

AcquirePixelCache() acquires pixels from the in-memory or disk pixel cache as
defined by the geometry parameters. A pointer to the pixels is returned if the
pixels are transferred, otherwise a NULL is returned.

A description of each parameter follows:

image The image.
x, y, columns, rows These values define the perimeter of a region of
exception Return any errors or warnings in this structure. pixels.

GetIndexes() get indexes.

IndexPacket *GetIndexes(const Image *image)

GetIndexes() returns the colormap indexes associated with the last call to the
SetPixelCache() or GetPixelCache() methods.

A description of each parameter follows:

image The image.

21 C API Methods 173

GetOnePixel() get one pixel from cache.

PixelPacket *GetOnePixel(const Image image, const int x, const int y)

GetOnePixelFromCache() returns a single pixel at the specified(x, y) location.
The image background color is returned if an error occurs.

A description of each parameter follows:

image The image.
x, y These values define the location of the pixel to return.

GetPixelCache() get pixels from cache.

PixelPacket *GetPixelCache(Image *image, const int x, const int y, const
unsigned long columns, const unsigned long rows)

GetPixelCache() gets pixels from the in-memory or disk pixel cache as defined
by the geometry parameters. A pointer to the pixels is returned if the pixels are
transferred, otherwise a NULL is returned.

A description of each parameter follows:

image The image.
x, y, columns, rows These values define the perimeter of a region of pixels.

SetPixelCache() set pixel cache.

PixelPacket *SetPixelCache(Image *image, const int x, const int y, const
unsigned long columns, const unsigned long rows)

SetPixelCache() allocates an area to store image pixels as defined by the region
rectangle and returns a pointer to the area. This area is subsequently transferred
from the pixel cache with method SyncPixelCache. A pointer to the pixels is
returned if the pixels are transferred, otherwise a NULL is returned.

A description of each parameter follows:

image The image.
x, y, columns, rows These values define the perimeter of a region of pixels.

174 ImageMagick

SyncPixelCache() synchronize pixel cache.

unsigned int SyncPixelCache(Image *image)

SyncPixelCache() saves the image pixels to the in-memory or disk cache. The
method returns True if the pixel region is synced, otherwise False.

A description of each parameter follows:

image The image.

21.21 ImageMagick Cache Views Methods

CloseCacheView close cache view.

void CloseCacheView(ViewInfo *view)

CloseCacheView() closes the specified view returned by a previous call to Open-
CacheView().

A description of each parameter follows:

view The address of a structure of type ViewInfo.

GetCacheView get cache view.

PixelPacket *GetCacheView(ViewInfo *view, const int x, const int y, const
unsigned long columns, const unsigned long rows)

GetCacheView() gets pixels from the in-memory or disk pixel cache as defined
by the geometry parameters. A pointer to the pixels is returned if the pixels are
transferred, otherwise a NULL is returned.

A description of each parameter follows:

view The address of a structure of type ViewInfo.
x, y, columns, rows These values define the perimeter of a region of pixels.

GetCacheViewIndexes get cache view indexes.

IndexPacket *GetCacheViewIndexes(const ViewInfo *view)

GetCacheViewIndexes() returns the colormap indexes associated with the spec-
ified view.

A description of each parameter follows:

view The address of a structure of type ViewInfo.

21 C API Methods 175

GetCacheViewPixels get cache view.

PixelPacket *GetCacheViewPixels(const ViewInfo *view)

GetCacheViewPixels() returns the pixels associated with the specified specified
view.

A description of each parameter follows:

view The address of a structure of type ViewInfo.

OpenCacheView open a cache view.

ViewInfo *OpenCacheView(Image *image)

OpenCacheView() opens a view into the pixel cache.

A description of each parameter follows:

image The image.

SetCacheView set a cache view.

PixelPacket *SetCacheView(ViewInfo *view, const long x, const long y,
const unsigned long columns, const unsigned long rows)

SetCacheView() gets pixels from the in-memory or disk pixel cache as defined
by the geometry parameters. A pointer to the pixels is returned if the pixels are
transferred, otherwise a NULL is returned.

A description of each parameter follows:

view The address of a structure of type ViewInfo.
x, y, columns, rows These values define the perimeter of a region of pixels.

SyncCacheView synchronize a cache view.

unsigned int SyncCacheView(ViewInfo *view)

SyncCacheView() saves the view pixels to the in-memory or disk cache. The
method returns True if the pixel region is synced, otherwise False.

A description of each parameter follows:

view The address of a structure of type ViewInfo.

176 ImageMagick

21.22 Image Pixel FIFO

ReadStream() read a stream.

unsigned int ReadStream(const ImageInfo *imageinfo, void (*Stream)(const
Image *, const void *, const sizet), ExceptionInfo *exception)

ReadStream() makes the image pixels available to a user supplied callback method
immediately upon reading a scanline with the ReadImage() method.

A description of each parameter follows:

image info The image info.
stream A callback method.
exception Return any errors or warnings in this structure.

WriteStream() write a stream.

unsigned int WriteStream(const ImageInfo *imageinfo, Image *, int(*Stream)
(const Image *, const void *, const sizet))

WriteStream() makes the image pixels available to a user supplied callback
method immediately upon writing pixel data with the WriteImage() method.

A description of each parameter follows:

image info The image info.
stream A callback method.

21.23 Methods to Read or Write Binary Large
Objects

BlobToImage() convert a blob to an image.

Image *BlobToImage(const ImageInfo *imageinfo, const void *blob, const
size t length, ExceptionInfo *exception)

BlobToImage() implements direct to memory image formats. It returns the blob
as an image.

A description of each parameter follows:

image info The image info.
blob The address of a character stream in one of the image formats understood

by ImageMagick.
length This sizet integer reflects the length in bytes of the blob.
exception Return any errors or warnings in this structure.

21 C API Methods 177

DestroyBlobInfo() destroy a blob.

void DestroyBlobInfo(BlobInfo *blob)

DestroyBlobInfo() deallocates memory associated with an BlobInfo structure.

A description of each parameter follows:

blob Specifies a pointer to a BlobInfo structure.

GetBlobInfo() initialize a blob.

void GetBlobInfo(BlobInfo *blob)

GetBlobInfo() initializes the BlobInfo structure.

A description of each parameter follows:

blob Specifies a pointer to a BlobInfo structure.

ImageToBlob() convert image to a blob.

void *ImageToBlob(const ImageInfo *imageinfo, Image *image, sizet
*length, ExceptionInfo *exception)

ImageToBlob() implements direct to memory image formats. It returns the im-
age as a blob and its length. The magick member of the Image structure deter-
mines the format of the returned blob(GIG, JPEG, PNG, etc.).

A description of each parameter follows:

image info Specifies a pointer to an ImageInfo structure.
image The image.
length This pointer to a sizet integer sets the initial length of the blob. On

return, it reflects the actual length of the blob.
exception Return any errors or warnings in this structure.

21.24 ImageMagick Registry Methods

DeleteMagickRegistry delete a blob from the registry.

unsigned int DeleteMagickRegistry(const long id)

178 ImageMagick

DeleteMagickRegistry() deletes an entry in the registry as defined by the id. It
returns True if the entry is deleted otherwise False if no entry is found in the
registry that matches the id.

A description of each parameter follows:

id The registry id.

GetImageFromMagickRegistry get an image from the registry by name.

Image *GetImageFromMagickRegistry(const char *name, ExceptionInfo
*exception)

GetImageFromMagickRegistry() gets an image from the registry as defined by
its name. If the blob that matches the name is not found, NULL is returned.

A description of each parameter follows:

name The image name.
exception Return any errors or warnings in this structure.

GetMagickRegistry get a blob from the registry.

const void *GetMagickRegistry(const long id,RegistryType *type, sizet
*length, ExceptionInfo *exception)

GetMagickRegistry() gets a blob from the registry as defined by the id. If the
blob that matches the id is not found, NULL is returned.

A description of each parameter follows:

id The registry id.
type The registry type.
length The blob length in number of bytes.
exception Return any errors or warnings in this structure.

SetMagickRegistry save a blob to the registry.

long SetMagickRegistry(const void *blob,const sizet length, Exception-
Info *exception)

SetMagickRegistry() sets a blob into the registry and returns a unique ID. If an
error occurs, -1 is returned.

A description of each parameter follows:

21 C API Methods 179

type The registry type.
blob The address of a Binary Large OBject.
length The blob length in number of bytes.
exception Return any errors or warnings in this structure.

21.25 Methods to Read or List ImageMagick
Image formats

DestroyMagickInfo() destroy magick info.

void DestroyMagickInfo()

DestroyMagickInfo() deallocates memory associated MagickInfo list.

GetImageMagick() return an image format that matches the magic number.

char *GetImageMagick(const unsigned char *magick, const sizet length)

Method GetImageMagick() searches for an image format that matches the spec-
ified magick string. If one is found the tag is returned otherwise NULL.

A description of each parameter follows:

magick The image format we are searching for.
length The length of the binary string.

GetMagickConfigurePath() get the path of a configuration file.

char *GetMagickConfigurePath(const char *filename)

GetMagickConfigurePath() searches a number of pre-defined locations for the
specified ImageMagick configuration file and returns the path. The search order
follows:

<current directory>/
<client path>/
$MAGICK_HOME/
$HOME/.magick/
MagickLibPath
MagickModulesPath
MagickSharePath

A description of each parameter follows:

filename The desired configuration file.

180 ImageMagick

GetMagickInfo() get image format attributes.

MagickInfo *GetMagickInfo(const char *tag)

GetMagickInfo() returns a pointer MagickInfo structure that matches the speci-
fied tag. If tag is NULL, the head of the image format list is returned.

A description of each parameter follows:

tag The image format we are looking for.
exception Return any errors or warnings in this structure.

GetMagickVersion() get the ImageMagick version.

char *GetMagickVersion(unsigned int *version)

GetMagickVersion() returns the ImageMagick API version as a string and as a
number.

A description of each parameter follows:

version The ImageMagick version is returned as a number.

InitializeMagick() initialize the ImageMagick API.

InitializeMagick(const char *path)

InitializeMagick() initializes the ImageMagick environment.

A description of each parameter follows:

path The execution path of the current ImageMagick client.

ListMagickInfo() list the recognized image formats.

void ListMagickInfo(FILE *file)

ListMagickInfo() lists the image formats to a file.

A description of each parameter follows:

file A file handle.
exception Return any errors or warnings in this structure.

21 C API Methods 181

RegisterMagickInfo() register a new image format.

MagickInfo *RegisterMagickInfo(MagickInfo *entry)

RegisterMagickInfo() adds attributes for a particular image format to the list of
supported formats. The attributes include the image format tag, a method to read
and/or write the format, whether the format supports the saving of more than one
frame to the same file or blob, whether the format supports native in-memory
I/O, and a brief description of the format.

A description of each parameter follows:

entry The magick info.

SetMagickInfo()

MagickInfo *SetMagickInfo(const char *tag)

Method SetMagickInfo() allocates a MagickInfo structure and initializes the
members to default values.

A description of each parameter follows:

tag a character string that represents the image format associated with the Mag-
ickInfo structure.

UnregisterMagickInfo()

unsigned int UnregisterMagickInfo(const char *tag)

Method UnregisterMagickInfo() removes a tag from the magick info list. It re-
turns False if the tag does not exist in the list otherwise True.

A description of each parameter follows:

tag a character string that represents the image format we are looking for.

21.26 ImageMagick Error Methods

CatchImageException()

CatchImageException(Image *image)

182 ImageMagick

CatchImageException() returns if no exceptions are found in the image sequence,
otherwise it determines the most severe exception and reports it as a warning or
error depending on the severity.

A description of each parameter follows:

image An image sequence.

DestroyExceptionInfo() destroy exception info.

void DestroyExceptionInfo(ExceptionInfo *exception)

DestroyExceptionInfo() deallocates memory associated withexception .

A description of each parameter follows:

exception The exception info.

GetExceptionInfo get exception info.

GetExceptionInfo(ExceptionInfo *exception)

GetExceptionInfo() initializesexception to default values.

A description of each parameter follows:

exception The exception info.

GetImageException() get the severest error.

GetImageException(Image *image, ExceptionInfo *exception)

GetImageException() traverses an image sequence and returns any error more
severe than noted by the exception parameter.

A description of each parameter follows:

image An image sequence.
exception Return the highest severity exception in the seqeunce.

21 C API Methods 183

MagickError() declare an error.

void MagickError(const ExceptionType error, const char *reason, const
char *description)

MagickError() calls the error handler method with an error reason.

A description of each parameter follows:

exception The error severity.
reason Define the reason for the error.
description Describe the error.

MagickWarning() declare a warning.

void MagickWarning(const ExceptionType warning, const char *reason,
const char *description)

MagickWarning() calls the warning handler method with a warning reason.

A description of each parameter follows:

warning The warning severity.
reason Define the reason for the warning.
description Describe the warning.

SetErrorHandler() set the warning handler.

ErrorHandler SetErrorHandler(ErrorHandler handler)

SetErrorHandler() sets the error handler to the specified method and returns the
previous error handler.

A description of each parameter follows:

handler The method to handle errors.

SetWarningHandler() set the warning handler.

ErrorHandler SetWarningHandler(ErrorHandler handler)

SetWarningHandler() sets the warning handler to the specified method and re-
turns the previous warning handler.

A description of each parameter follows:

handler The method to handle warnings.

184 ImageMagick

ThrowException() throw an exception.

void ThrowException(ExceptionInfo *exception, const ExceptionType sever-
ity, const char *reason, const char *description)

ThrowException() throws an exception with the specified severity code, reason,
and optional description.

A description of each parameter follows:

exception The exception.
severity Define the severity of the exception.
reason Define the reason for the exception.
description Describe the exception.

21.27 ImageMagick Memory Allocation Methods

AcquireMemory allocate memory.

void *AcquireMemory(const sizet size)

AcquireMemory() returns a pointer to a block of memory at least size bytes
suitably aligned for any use.

A description of each parameter follows:

size The size of the memory in bytes to allocate.

LiberateMemory free allocated memory.

void LiberateMemory(void **memory)

LiberateMemory() frees memory that has already been allocated.

A description of each parameter follows:

span A pointer to a block memory to free for reuse.

ReacquireMemory change the size of allocated memory.

void ReacquireMemory(void **memory, const sizet size)

21 C API Methods 185

ReacquireMemory() changes the size of allocated memory and returns a pointer
to the (possibly moved) block. The contents will be unchanged up to the lesser
of the new and old sizes.

A description of each parameter follows:

memory A pointer to a memory allocation. On return the pointer may change
but the contents of the original allocation will not.

size The new size of the allocated memory.

21.28 ImageMagick Progress Monitor Methods

MagickMonitor measure progress toward completion of a task.

MagickExport unsigned int MagickMonitor(const char *text,const offt quan-
tum, const sizet span,ExceptionInfo *exception)

MagickMonitor() calls the monitor handler method with a text string that de-
scribes the task and a measure of completion. The method returns False on suc-
cess otherwise True if an error is encountered, e.g. if there was a user interrupt.

A description of each parameter follows:

quantum The position relative to the span parameter which represents how
much progress has been made toward completing a task.

span The span relative to completing a task.
exception Return any errors or warnings in this structure.

SetMonitorHandler define a custom progress monitor.

MonitorHandler SetMonitorHandler(MonitorHandler handler)

SetMonitorHandler() sets the monitor handler to the specified method and re-
turns the previous monitor handler.

A description of each parameter follows:

handler The progress monitor handler method.

22 C++ API Methods

This section was converted from HTML files in the “www/Magick++” directory
of the ImageMagick distribution. Some of the files contain figures which are not
yet visible here. Refer to the HTML to see them.

186

Magick++ provides a simple C++ API to the ImageMagick image processing
library which supports reading and writing a huge number of image formats as
well as supporting a broad spectrum of traditional image processing
operations. The ImageMagick C API is complex and the data structures are
currently not documented. Magick++ provides access to most of the features
available from the C API but in a simple object-oriented and well-documented
framework.

Magick++ is intended to support commercial-grade application development. In
order to avoid possible conflicts with the user’s application, all symbols
contained in Magick++ (included by the header <Magick++.h>) are scoped to
the namespace Magick. Symbols from the ImageMagick C library are imported
under the MagickLib namespace to avoid possible conflicts and ImageMagick
macros are only included within the Magick++ implementation so they won’t
impact the user’s application.

The core class in Magick++ is the Image class. The Image class provides
methods to manipulate a single image frame (e.g. a JPEG image). Standard
Template Library (STL) compatable algorithms and function objects are
provided in order to manipulate multiple image frames or to read and write
file formats which support multiple image frames (e.g. GIF animations, MPEG
animations, and Postscript files).

The Image class supports reference-counted memory management which supports
the semantics of an intrinsic variable type (e.g. ’int’) with an extremely
efficient operator = and copy constructor (only a pointer is assigned) while
ensuring that the image data is replicated as required so that it the image
may be modified without impacting earlier generations. Since the Image class
manages heap memory internally, images are best allocated via C++ automatic
(stack-based) memory allocation. This support allows most programs using
Magick++ to be written without using any pointers, simplifying the
implementation and avoiding the risks of using pointers.

The image class uses a number of supportive classes in order to specify
arguments. Colors are specified via the Color class. Colors specified in
X11-style string form are implicitly converted to the Color class. Geometry
arguments (those specifying width, height, and/or x and y offset) are
specified via the Geometry class. Similar to the Color class, geometries
specified as an X11-style string are implicitly converted to the Geometry
class. Two dimensional drawable objects are specified via the Drawable
class. Drawable objects may be provided as a single object or as a list of
objects to be rendered using the current image options. Montage options (a
montage is a rendered grid of thumbnails in one image) are specified via the
Montage class.

Errors are reported using C++ exceptions derived from the Exception class,
which is itself derived from the standard C++ exception class. Exceptions
are reported synchronous with the operation and are caught by the first
matching try block as the stack is unraveled. This allows a clean coding
style in which multiple related Magick++ commands may be executed with
errors handled as a unit rather than line-by-line. Since the Image object
provides reference-counted memory management, unreferenced images on the
stack are automatically cleaned up, avoiding the potential for memory leaks.

For ease of access, the documentation for the available user-level classes
is available via the following table.

Magick++ User-Level Classes

Blob Binary Large OBject container.

CoderInfo Report information about supported image formats (use with
coderInfoList())

Color Color specification.

Drawable Drawable shape (for input to ’draw’).

188 ImageMagick

Exception C++ exception objects.

Geometry Geometry specification.

Image Image frame. This is the primary object in Magick++.

Montage Montage options for montageImages().

Pixels Low-level access to image pixels.

STL STL algorithms and function objects for operating on containers
of image frames.

TypeMetricContainer for font type metrics (use with
Image::fontTypeMetrics).

22.1 Magick::Blob

Blob provides the means to contain any opaque data. It is named after the
term "Binary Large OBject" commonly used to describe unstructured data (such
as encoded images) which is stored in a database. While the function of Blob
is very simple (store a pointer and and size associated with allocated
data), the Blob class provides some very useful capabilities. In particular,
it is fully reference counted just like the Image class.

The Blob class supports value assignment while preserving any outstanding
earlier versions of the object. Since assignment is via a pointer
internally, Blob is efficient enough to be stored directly in an STL
container or any other data structure which requires assignment. In
particular, by storing a Blob in an associative container (such as STL’s
’map’) it is possible to create simple indexed in-memory "database" of
Blobs.

Magick++ currently uses Blob to contain encoded images (e.g. JPEG) as well
as ICC and IPTC profiles. Since Blob is a general-purpose class, it may be
used for other purposes as well.

The methods Blob provides are shown in the following table:

Blob Methods

Method Return Type Signature(s) Description

Blob void Default constructor

const void*
Construct object with

data_, data, making a copy of
size_t
length_ the supplied data

const Blob& Copy constructor
blob_ (reference counted)

operator= Blob const Blob& blob_ Assignment operator
(reference counted)

Update object contents,
making a copy of the

update void const void* data_, supplied data. Any
size_t length_

existing data in the
object is deallocated.

data const void* void Obtain pointer to data

length size_t void Obtain data length

Update object contents,
using supplied pointer
directly (no copy) Any
existing data in the
object is deallocated.
The user must ensure that
the pointer supplied is
not deleted or otherwise

void* data_, size_t modified after it has
been supplied to this

updateNoCopyvoid length_, Blob::Allocator method. The optional
allocator_ =
Blob::NewAllocator allocator_ parameter

190 ImageMagick

allows the user to
specify if the C
(MallocAllocator) or C++
(NewAllocator) memory
allocation system was
used to allocate the
memory. The default is to
use the C++ memory
allocator.

22.2 Magick::CoderInfo

The CoderInfo class provides the means to provide information regarding
ImageMagick support for an image format (designated by a magick string). It
may be used to provide support for a specific named format (provided as an
argument to the constructor), or as an element of a container when format
support is queried using the coderInfoList() templated function.

The following code fragment illustrates how CoderInfo may be used.

CoderInfo info("GIF");
cout << info->name() << ": (" << info->description() << ") : ";
cout << "Readable = ";
if (info->isReadable())

cout << "true";
else

cout << "false";
cout << ", ";
cout << "Writable = ";
if (info->isWritable())

cout << "true";
else

cout << "false";
cout << ", ";
cout << "Multiframe = ";
if (info->isMultiframe())

cout << "true";
else

cout << "false";
cout << endl;

The methods available in the CoderInfo class are shown in the following
table:

CoderInfo Methods

Method Returns Signature Description

Construct object corresponding to
CoderInfo void named format (e.g. "GIF"). An

exception is thrown if the format is
not supported.

name std::string void Format name (e.g. "GIF").

description std::string void Format description (e.g. "CompuServe
graphics interchange format").

isReadable bool void Format is readable.

isWritable bool void Format is writeable.

isMultiFrame bool void Format supports multiple frames.

22.3 Magick::Color

Color is the base color class in Magick++. It is a simple container class
for the pixel red, green, blue, and alpha values scaled to fit ImageMagick’s
Quantum size. Normally users will instantiate a class derived from Color
which supports the color model that fits the needs of the application. The
Color class may be constructed directly from an X11-style color string.

Available derived color specification classes are shown in the following
table:

Color Derived Classes

ColorRGB Representation of RGB color with red, green, and blue specified
as ratios (0 to 1)

ColorGrayRepresentation of grayscale RGB color (equal parts red, green,
and blue) specified as a ratio (0 to 1)

ColorMonoRepresentation of a black/white color (true/false)

ColorYUV Representation of a color in the YUV colorspace

ImageMagick may be compiled to support 32 or 64 bit pixels of type
PixelPacket. This is controlled by the value of the QuantumDepth define. The
default is 64 bit pixels, which provide the best accuracy. If memory
consumption must be minimized, or processing time must be minimized, then
ImageMagick may be compiled with QuantumDepth=8. The following table shows
the relationship between QuantumDepth, the type of Quantum, and the overall
PixelPacket size.

Effect Of QuantumDepth Values

QuantumDepth Quantum Typedef PixelPacket Size

8 unsigned char 32 bits

16 unsigned short 64 bits

Color Class

The Color base class is not intended to be used directly. Normally a user
will construct a derived class or inherit from this class. Color arguments
are must be scaled to fit the Quantum size. The Color class contains a
pointer to a PixelPacket, which may be allocated by the Color class, or may
refer to an existing pixel in an image.

An alternate way to contruct the class is via an X11-compatable color
specification string.

class Color
{

public:
Color (Quantum red_,

Quantum green_,
Quantum blue_);

Color (Quantum red_,
Quantum green_,
Quantum blue_,
Quantum alpha_);

Color (const std::string &x11color_);
Color (const char * x11color_);
Color (void);
virtual ˜Color (void);

22 C++ API Methods 193

Color (const Color & color_);

// Red color (range 0 to MaxRGB)
void redQuantum (Quantum red_);
Quantum redQuantum (void) const;

// Green color (range 0 to MaxRGB)
void greenQuantum (Quantum green_);
Quantum greenQuantum (void) const;

// Blue color (range 0 to MaxRGB)
void blueQuantum (Quantum blue_);
Quantum blueQuantum (void) const;

// Alpha level (range OpaqueOpacity=0 to TransparentOpacity=MaxRGB)
void alphaQuantum (Quantum alpha_);
Quantum alphaQuantum (void) const;

// Scaled (to 1.0) version of alpha for use in sub-classes
// (range opaque=0 to transparent=1.0)
void alpha (double alpha_);
double alpha (void) const;

// Does object contain valid color?
void isValid (bool valid_);
bool isValid (void) const;

// Set color via X11 color specification string
const Color& operator= (const std::string &x11color_);
const Color& operator= (const char * x11color_);

// Assignment operator
Color& operator= (const Color& color_);

// Return X11 color specification string
/* virtual */ operator std::string() const;

// Return ImageMagick PixelPacket
operator PixelPacket() const;

// Construct color via ImageMagick PixelPacket
Color (const PixelPacket &color_);

// Set color via ImageMagick PixelPacket
const Color& operator= (PixelPacket &color_);

};

ColorRGB

Representation of an RGB color. All color arguments have a valid range of
0.0 - 1.0.

class ColorRGB : public Color
{

public:
ColorRGB (double red_, double green_, double blue_);
ColorRGB (void);
ColorRGB (const Color & color_);
/* virtual */ ˜ColorRGB (void);

void red (double red_);
double red (void) const;

void green (double green_);
double green (void) const;

void blue (double blue_);
double blue (void) const;

194 ImageMagick

// Assignment operator from base class
ColorRGB& operator= (const Color& color_);

};

ColorGray

Representation of a grayscale color (in RGB colorspace). Grayscale is simply
RGB with equal parts of red, green, and blue. All double arguments have a
valid range of 0.0 - 1.0.

class ColorGray : public Color
{

public:
ColorGray (double shade_);
ColorGray (void);
ColorGray (const Color & color_);
/* virtual */ ˜ColorGray ();

void shade (double shade_);
double shade (void) const;

// Assignment operator from base class
ColorGray& operator= (const Color& color_);

};

ColorMono

Representation of a black/white pixel (in RGB colorspace). Color arguments
are constrained to ’false’ (black pixel) and ’true’ (white pixel).

class ColorMono : public Color
{

public:
ColorMono (bool mono_);
ColorMono (void);
ColorMono (const Color & color_);
/* virtual */ ˜ColorMono ();

void mono (bool mono_);
bool mono (void) const;

// Assignment operator from base class
ColorMono& operator= (const Color& color_);

};

ColorHSL

Representation of a color in Hue/Saturation/Luminosity (HSL) colorspace.

class ColorHSL : public Color
{

public:
ColorHSL (double hue_, double saturation_, double luminosity_);
ColorHSL (void);
ColorHSL (const Color & color_);
/* virtual */ ˜ColorHSL ();

void hue (double hue_);
double hue (void) const;

void saturation (double saturation_);
double saturation (void) const;

void luminosity (double luminosity_);
double luminosity (void) const;

22 C++ API Methods 195

// Assignment operator from base class
ColorHSL& operator= (const Color& color_);

};

ColorYUV

Representation of a color in YUV colorspace (used to encode color for
television transmission).

Argument ranges:
Y: 0.0 through 1.0
U: -0.5 through 0.5
V: -0.5 through 0.5

class ColorYUV : public Color
{

public:
ColorYUV (double y_, double u_, double v_);
ColorYUV (void);
ColorYUV (const Color & color_);
/* virtual */ ˜ColorYUV (void);

void u (double u_);
double u (void) const;

void v (double v_);
double v (void) const;

void y (double y_);
double y (void) const;

// Assignment operator from base class
ColorYUV& operator= (const Color& color_);

};

22.4 Magick::Drawable

Drawable provides a convenient interface for preparing vector, image, or
text arguments for the Image::draw() method. Each instance of a Drawable
sub-class represents a single drawable object. Drawable objects may be drawn
"one-by-one" via multiple invocations of the Image draw() method, or may be
drawn "all-at-once" by passing a list of Drawable objects to the Image
draw() method. The one-by-one approach is convenient for simple drawings,
while the list-based approach is appropriate for drawings which require more
sophistication.

The following is an example of using the Drawable subclasses with the
one-by-one approach to draw the following figure:

[Drawable_example_1.png]

#include <string>
#include <iostream>
#include <Magick++.h>

using namespace std;
using namespace Magick;

int main(int /*argc*/,char **/*argv*/)
{

try {
// Create base image (white image of 300 by 200 pixels)
Image image(Geometry(300,200), Color("white"));

// Set draw options
image.strokeColor("red"); // Outline color
image.fillColor("green"); // Fill color
image.strokeWidth(5);

// Draw a circle
image.draw(DrawableCircle(100,100, 50,100));

// Draw a rectangle
image.draw(DrawableRectangle(200,200, 270,170));

// Display the result
image.display();

}
catch(exception &error_)

{
cout << "Caught exception: " << error_.what() << endl;
return 1;

}

return 0;
}

Since Drawable is an object it may be saved in an array or a list for later
(perhaps repeated) use. The following example shows how to draw the same
figure using the list-based approach

#include <string>
#include <iostream>
#include <list>
#include <Magick++.h>

using namespace std;
using namespace Magick;

int main(int /*argc*/,char **/*argv*/)
{

try {

22 C++ API Methods 197

// Create base image (white image of 300 by 200 pixels)
Image image(Geometry(300,200), Color("white"));

// Construct drawing list
std::list<Magick::Drawable> drawList;

// Add some drawing options to drawing list
drawList.push_back(DrawableStrokeColor("red")); // Outline color
drawList.push_back(DrawableStrokeWidth(5)); // Stroke width
drawList.push_back(DrawableFillColor("green")); // Fill color

// Add a Circle to drawing list
drawList.push_back(DrawableCircle(100,100, 50,100));

// Add a Rectangle to drawing list
drawList.push_back(DrawableRectangle(200,100, 270,170));

// Draw everything using completed drawing list
image.draw(drawList);

// Display the result
image.display();

}
catch(exception &error_)

{
cout << "Caught exception: " << error_.what() << endl;
return 1;

}

return 0;
}

Drawable depends on the simple Coordinate structure which represents a pair
of x,y coodinates. The methods provided by the Coordinate structure are
shown in the following table:

Coordinate Structure Methods

Method/Member Signature Description

Coordinate void Default Constructor

double x_, double y_ Constructor, setting first & second

x double x_ x coordinate member

y double y_ y coordinate member

The Drawable classes are shown in the following table:

Drawable Classes

Sub-Class Constructor Signature Description

double sx_, double sy_, double Set scaling, rotation, and
DrawableAffine rx_, double ry_, double tx_, translation (coordinate

double ty_ transformation).

DrawableAngle double angle_ Set drawing angle

Draw an arc using the stroke
double startX_, double color and based on the circle

starting at coordinates
DrawableArc startY_, double endX_, double startX_,startY_, and ending

endY_, double startDegrees,
double endDegrees_ with coordinates endX_,endY_,

and bounded by the rotational
arc startDegrees_,endDegrees_

198 ImageMagick

const Draw a Bezier curve using the
DrawableBezier std::list<Magick::Coordinate> stroke color and based on the

&coordinates_ coordinates specified by the
coordinates_ list.

Draw a circle using the
double originX_, double stroke color and thickness

DrawableCircle originY_, double perimX_, using specified origin and
double perimY_ perimeter coordinates. If a

fill color is specified, then
the object is filled.

Color image according to
paintMethod. The point method
recolors the target pixel.
The replace method recolors
any pixel that matches the
color of the target pixel.

DrawableColor double x_, double y_, Floodfill recolors any pixel
PaintMethod paintMethod_ that matches the color of the

target pixel and is a
neighbor, whereas
filltoborder recolors any
neighbor pixel that is not
the border color. Finally,
reset recolors all pixels.

Composite current image with
contents of specified image,
at specified coordinates. If
the matte attribute is set to
true, then the image

DrawableCompositeImage double x_, double y_, const composition will consider an
std::string &filename_ alpha channel, or

transparency, present in the
image file so that non-opaque
portions allow part (or all)
of the composite image to
show through.

double x_, double y_, const
Image &image_

Composite current image with
contents of specified image,
rendered with specified width
and height, at specified
coordinates. If the matte
attribute is set to true,
then the image composition

double x_, double y_, double will consider an alpha
width_, double height_, const channel, or transparency,
std::string &filename_ present in the image file so

that non-opaque portions
allow part (or all) of the
composite image to show
through. If the specified
width or height is zero, then
the image is composited at
its natural size, without
enlargement or reduction.

double x_, double y_, double
width_, double height_, const
Image &image_

22 C++ API Methods 199

Composite current image with
contents of specified image,
rendered with specified width
and height, using specified
composition algorithm, at
specified coordinates. If the
matte attribute is set to
true, then the image

double x_, double y_, double composition will consider an
width_, double height_, const alpha channel, or
std::string &filename_, transparency, present in the
CompositeOperator composition_ image file so that non-opaque

portions allow part (or all)
of the composite image to
show through. If the
specified width or height is
zero, then the image is
composited at its natural
size, without enlargement or
reduction.

double x_, double y_, double
width_, double height_, const
Image &image_,
CompositeOperator composition_

DrawableTextDecoration DecorationType decoration_ Specify decoration to apply
to text.

Specify the pattern of dashes
and gaps used to stroke
paths. The strokeDashArray
represents a zero-terminated
array of numbers that specify
the lengths of alternating
dashes and gaps in pixels. If

DrawableDashArray const unsigned int* dasharray_ an odd number of values is
provided, then the list of
values is repeated to yield
an even number of values. A
typical strokeDashArray_
array might contain the
members 5 3 2 0, where the
zero value indicates the end
of the pattern array.

Specify the distance into the
dash pattern to start the

DrawableDashOffset unsigned int offset_ dash. See documentation on
SVG’s stroke-dashoffset
property for usage details.

Draw an ellipse using the
stroke color and thickness,

double originX_, double specified origin, x & y
DrawableEllipse originY_, double radiusX_, radius, as well as specified

double radiusY_, double start and end of arc in
arcStart_, double arcEnd_ degrees. If a fill color is

specified, then the object is
filled.

DrawableFillColor const Color &color_ Specify drawing object fill
color.

Specify the algorithm which
is to be used to determine
what parts of the canvas are

200 ImageMagick

DrawableFillRule FillRule fillRule_ included inside the shape.
See documentation on SVG’s
fill-rule property for usage
details.

DrawableFillOpacity double opacity_ Specify opacity to use when
drawing using fill color.

DrawableFont const std::string &font_ Specify font name to use when
drawing text.

Specify font family, style,
weight (one of the set { 100
| 200 | 300 | 400 | 500 | 600
| 700 | 800 | 900 } with 400

const std::string &family_, being the normal size), and
stretch to be used to select

StyleType style_, the font used when drawing
unsigned long weight_,
StretchType stretch_ text. Wildcard matches may be

applied to style via the
AnyStyle enumeration, applied
to weight if weight is zero,
and applied to stretch via
the AnyStretch enumeration.

DrawableGravity GravityType gravity_ Specify text positioning
gravity.

double startX_, double Draw a line using stroke
DrawableLine startY_, double endX_, double color and thickness using

endY_ starting and ending
coordinates

Change the pixel matte value
to transparent. The point
method changes the matte
value of the target pixel.
The replace method changes
the matte value of any pixel
that matches the color of the
target pixel. Floodfill

DrawableMatte double x_, double y_, changes the matte value of
PaintMethod paintMethod_ any pixel that matches the

color of the target pixel and
is a neighbor, whereas
filltoborder changes the
matte value of any neighbor
pixel that is not the border
color, Finally reset changes
the matte value of all
pixels.

Specify miter limit. When two
line segments meet at a sharp
angle and miter joins have
been specified for
’lineJoin’, it is possible
for the miter to extend far

DrawableMiterLimit unsigned int miterLimit_ beyond the thickness of the
line stroking the path. The
miterLimit’ imposes a limit
on the ratio of the miter
length to the ’lineWidth’.
The default value of this

22 C++ API Methods 201

parameter is 4.

DrawablePath const std::list<Magick::VPath> Draw on image using vector
&path_ path.

Draw a point using stroke
DrawablePoint double x_, double y_ color and thickness at

coordinate

DrawablePointSize double pointSize_ Set font point size.

Draw an arbitrary polygon
using stroke color and

const thickness consisting of three
DrawablePolygon std::list<Magick::Coordinate> or more coordinates contained

&coordinates_ in an STL list. If a fill
color is specified, then the
object is filled.

Draw an arbitrary polyline
using stroke color and

const thickness consisting of three
DrawablePolyline std::list<Magick::Coordinate> or more coordinates contained

&coordinates_ in an STL list. If a fill
color is specified, then the
object is filled.

Pop Graphic Context. Removing
the current graphic context
from the graphic context

DrawablePopGraphicContext void stack restores the options to
the values they had prior to
the preceding
DrawablePushGraphicContext
operation.

Push Graphic Context. When a
graphic context is pushed,
options set after the context
is pushed (such as coordinate
transformations, color
settings, etc.) are saved to
a new graphic context. This
allows related options to be

DrawablePushGraphicContextvoid saved on a graphic context
"stack" in order to support
heirarchical nesting of
options. When
DrawablePopGraphicContext is
used to pop the current
graphic context, the options
in effect during the last
DrawablePushGraphicContext
operation are restored.

Start a pattern definition
with arbitrary pattern name
specified by id_, pattern
offset specified by x_ and
y_, and pattern size
specified by width_ and
height_. The pattern is
defined within the coordinate
system defined by the
specified offset and size.

std::string &id_, long x_, Arbitrary drawing objects
DrawablePushPattern long y_, long width_, long (including

height_ DrawableCompositeImage) may

202 ImageMagick

be specified between
DrawablePushPattern and
DrawablePopPattern in order
to draw the pattern. Normally
the pair
DrawablePushGraphicContext &
DrawablePopGraphicContext are
used to enclose a pattern
definition. Pattern
definitions are terminated by
a DrawablePopPattern object.

Terminate a pattern
DrawablePopPattern void definition started via

DrawablePushPattern.

Draw a rectangle using stroke
double upperLeftX_, double color and thickness from

DrawableRectangle upperLeftY_, double upper-left coordinates to
lowerRightX_, double lower-right coordinates. If
lowerRightY a fill color is specified,

then the object is filled.

Set rotation to use when
DrawableRotation double angle_ drawing (coordinate

transformation).

Draw a rounded rectangle
using stroke color and

double centerX_, double thickness, with specified
centerY_, double width_, center coordinate, specified

DrawableRoundRectangle double hight_, double width and height, and
cornerWidth_, double specified corner width and
cornerHeight_ height. If a fill color is

specified, then the object is
filled.

Apply scaling in x and y
DrawableScaling double x_, double y_ direction while drawing

objects (coordinate
transformation).

DrawableSkewX double angle_ Apply Skew in X direction
(coordinate transformation)

DrawableSkewY double angle_ Apply Skew in Y direction

DrawableStrokeAntialias bool flag_ Antialias while drawing lines
or object outlines.

DrawableStrokeColor const Color &color_ Set color to use when drawing
lines or object outlines.

Specify the shape to be used
at the end of open subpaths

DrawableStrokeLineCap LineCap linecap_ when they are stroked. Values
of LineCap are UndefinedCap,
ButtCap, RoundCap, and
SquareCap.

Specify the shape to be used
at the corners of paths (or
other vector shapes) when

DrawableStrokeLineJoin LineJoin linejoin_ they are stroked. Values of
LineJoin are UndefinedJoin,
MiterJoin, RoundJoin, and

22 C++ API Methods 203

BevelJoin.

DrawableStrokeOpacity double opacity_ Opacity to use when drawing
lines or object outlines.

DrawableStrokeWidth double width_ Set width to use when drawing
lines or object outlines.

Annotate image with text
using stroke color, font,
font pointsize, and box color
(text background color), at
specified coordinates. If

DrawableText double x_, double y_, text contains special format
std::string text_ characters the image

filename, type, width,
height, or other image
attributes may be
incorporated in the text (see
label()).

DrawableTranslation double x_, double y_ Apply coordinate translation
(set new coordinate origin).

DrawableTextAntialias bool flag_ Antialias while drawing text.

Dimensions of the output
viewbox. If the image is to
be written to a vector format
(e.g. MVG or SVG), then a
DrawablePushGraphicContext()

unsigned long x1_, unsigned object should be pushed to
DrawableViewbox long y1_, unsigned long x2_, the head of the list,

unsigned long y2_ followed by a
DrawableViewbox() statement
to establish the output
canvas size. A matching
DrawablePopGraphicContext()
object should be pushed to
the tail of the list.

Vector Path Classes

The vector paths supported by Magick++ are based on those supported by the
SVG XML specification. Vector paths are not directly drawable, they must
first be supplied as a constructor argument to the DrawablePath class in
order to create a drawable object. The DrawablePath class effectively
creates a drawable compound component which may be replayed as desired. If
the drawable compound component consists only of vector path objects using
relative coordinates then the object may be positioned on the image by
preceding it with a DrawablePath which sets the current drawing coordinate.
Alternatively coordinate transforms may be used to translate the origin in
order to position the object, rotate it, skew it, or scale it.

The "moveto" commands

The "moveto" commands establish a new current point. The effect is as if the
"pen" were lifted and moved to a new location. A path data segment must
begin with either one of the "moveto" commands or one of the "arc" commands.
Subsequent "moveto" commands (i.e., when the "moveto" is not the first
command) represent the start of a new subpath:

Moveto Classes

204 ImageMagick

Sub-Class Constructor Signature Description

Start a new sub-path at
the given coordinate.
PathMovetoAbs indicates
that absolute
coordinates will
follow; PathMovetoRel
indicates that relative
coordinates will
follow. If a relative

PathMovetoAbs const Magick::Coordinate moveto appears as the
&coordinate_ first element of the

path, then it is
treated as a pair of
absolute coordinates.
If a moveto is followed
by multiple pairs of
coordinates, the
subsequent pairs are
treated as implicit
lineto commands.

const std::list<Magick::Coordinate>
&coordinates_

PathMovetoRel const Magick::Coordinate
&coordinate_

const std::list<Magick::Coordinate>
&coordinates_

The "closepath" command

The "closepath" command causes an automatic straight line to be drawn from
the current point to the initial point of the current subpath:

Closepath Classes

Sub-Class Constructor Description
Signature

Close the current subpath by drawing a
straight line from the current point to

PathClosePath void current subpath’s most recent starting
point (usually, the most recent moveto
point).

The "lineto" commands

The various "lineto" commands draw straight lines from the current point to
a new point:

Lineto Classes

Sub-Class Constructor Signature Description

Draw a line from the
current point to the
given coordinate which
becomes the new current
point. PathLinetoAbs
indicates that absolute

22 C++ API Methods 205

coordinates are used;
PathLinetoRel indicates

PathLinetoAbs const Magick::Coordinate& that relative
coordinate_ coordinates are used. A

number of coordinates
pairs may be specified
in a list to draw a
polyline. At the end of
the command, the new
current point is set to
the final set of
coordinates provided.

const
std::list<Magick::Coordinate>
&coordinates_

PathLinetoRel const Magick::Coordinate&
coordinate_

const
std::list<Magick::Coordinate>
&coordinates_

Draws a horizontal line
from the current point
(cpx, cpy) to (x, cpy).
PathLinetoHorizontalAbs
indicates that absolute
coordinates are
supplied;

PathLinetoHorizontalAbsdouble x_ PathLinetoHorizontalRel
indicates that relative
coordinates are
supplied. At the end of
the command, the new
current point becomes
(x, cpy) for the final
value of x.

PathLinetoHorizontalRel double x_

Draws a vertical line
from the current point
(cpx, cpy) to (cpx, y).
PathLinetoVerticalAbs
indicates that absolute
coordinates are
supplied;

PathLinetoVerticalAbs double y_ PathLinetoVerticalRel
indicates that relative
coordinates are
supplied. At the end
of the command, the new
current point becomes
(cpx, y) for the final
value of y.

PathLinetoVerticalRel double y_

The curve commands

These three groups of commands draw curves:

* Cubic Bezier commands. A cubic Bezier segment is defined by a start
point, an end point, and two control points.

* Quadratic Bezier commands. A quadratic Bezier segment is defined by a

206 ImageMagick

start point, an end point, and one control point.
* Elliptical arc commands. An elliptical arc segment draws a segment of

an ellipse.

The cubic Bezier curve commands

The cubic Bezier commands depend on the PathCurvetoArgs argument class,
which has the constructor signature

PathCurvetoArgs(double x1_, double y1_,
double x2_, double y2_,
double x_, double y_);

The commands are as follows:

Cubic Bezier Curve Classes

Sub-Class Constructor Signature Description

Draws a cubic Bezier
curve from the current
point to (x,y) using
(x1,y1) as the control
point at the beginning
of the curve and
(x2,y2) as the control
point at the end of
the curve.
PathCurvetoAbs
indicates that
absolutecoordinates

PathCurvetoAbs const Magick::PathCurvetoArgs will follow;
&args_ PathCurvetoRel

indicates that
relative coordinates
will follow. Multiple
sets of coordinates
may be specified to
draw a polyBezier. At
the end of the
command, the new
current point becomes
the final (x,y)
coordinate pair used
in the polyBezier.

const
std::list<Magick::PathCurvetoArgs>
&args_

PathCurvetoRel const Magick::PathCurvetoArgs
&args_

const
std::list<Magick::PathCurvetoArgs>
&args_

Draws a cubic Bezier
curve from the current
point to (x,y). The
first control point is
assumed to be the
reflection of the
second control point
on the previous
command relative to
the current point. (If
there is no previous

22 C++ API Methods 207

command or if the
previous command was
not an PathCurvetoAbs,
PathCurvetoRel,
PathSmoothCurvetoAbs
or
PathSmoothCurvetoRel,
assume the first
control point is
coincident with the

PathSmoothCurvetoAbsconst Magick::Coordinate current point.)
&coordinates_ (x2,y2) is the second

control point (i.e.,
the control point at
the end of the
curve).
PathSmoothCurvetoAbs
indicates that
absolute coordinates
will follow;
PathSmoothCurvetoRel
indicates that
relative coordinates
will follow. Multiple
sets of coordinates
may be specified to
draw a polyBezier. At
the end of the
command, the new
current point becomes
the final (x,y)
coordinate pair used
in the polyBezier.

const std::list<Magick::Coordinate>
&coordinates_

PathSmoothCurvetoRelconst Magick::Coordinate
&coordinates_

const std::list<Magick::Coordinate>
&coordinates_

The quadratic Bezier curve commands

The quadratic Bezier commands depend on the PathQuadraticCurvetoArgs
argument class, which has the constructor signature:

PathQuadraticCurvetoArgs(double x1_, double y1_,
double x_, double y_);

The quadratic Bezier commands are as follows:

Quadratic Bezier Curve Classes

Sub-Class Constructor Signature Description

Draws a quadratic Bezier curve
from the current point to
(x,y) using (x1,y1) as the
control point.
PathQuadraticCurvetoAbs
indicates that absolute
coordinates will follow;

208 ImageMagick

PathQuadraticCurvetoRel
PathQuadraticCurvetoAbs const Magick::PathQuadraticCurvetoArgs indicates that relative

&args_
coordinates will follow.
Multiple sets of coordinates
may be specified to draw a
polyBezier. At the end of the
command, the new current point
becomes the final (x,y)
coordinate pair used in the
polyBezier.

const
std::list<Magick::PathQuadraticCurvetoArgs>
&args_

PathQuadraticCurvetoRel const Magick::PathQuadraticCurvetoArgs
&args_

const
std::list<Magick::PathQuadraticCurvetoArgs>
&args_

Draws a quadratic Bezier curve
from the current point to
(x,y). The control point is
assumed to be the reflection
of the control point on the
previous
command relative to the
current point. (If there is no
previous command or if the
previous command was not a
PathQuadraticCurvetoAbs,
PathQuadraticCurvetoRel,
PathSmoothQuadraticCurvetoAbs

PathSmoothQuadraticCurvetoAbsconst Magick::Coordinate &coordinate_ or
PathSmoothQuadraticCurvetoRel,
assume the control point is
coincident with the current
point.)
PathSmoothQuadraticCurvetoAbs
indicates that absolute
coordinates will follow;
PathSmoothQuadraticCurvetoRel
indicates that relative
coordinates will follow. At
the end of the command, the
new current point becomes the
final (x,y) coordinate pair
used in the polyBezier.

const std::list<Magick::Coordinate>
&coordinates_

PathSmoothQuadraticCurvetoRelconst Magick::Coordinate &coordinate_

const std::list<Magick::Coordinate>
&coordinates_

The elliptical arc curve commands

The elliptical arc curve commands depend on the PathArcArgs argument class,
which has the constructor signature:

22 C++ API Methods 209

PathArcArgs(double radiusX_, double radiusY_,
double xAxisRotation_, bool largeArcFlag_,
bool sweepFlag_, double x_, double y_);

The elliptical arc commands are as follows:

Elliptical Arc Curve Classes

Sub-Class Constructor Signature Description

Draws an elliptical arc
from the current point
to (x, y). The size and
orientation of the
ellipse are defined by
two radii (radiusX,
radiusY) and an
xAxisRotation, which
indicates how the
ellipse as a whole is
rotated relative to the
current coordinate
system. The center (cx,
cy) of the ellipse is

PathArcAbs const Magick::PathArcArgs calculated automatically
&coordinates_ to satisfy the

constraints imposed by
the other parameters.
largeArcFlag and
sweepFlag contribute to
the automatic
calculations and help
determine how the arc is
drawn. If largeArcFlag
is true then draw the
larger of the available
arcs. If sweepFlag is
true, then draw the arc
matching a clock-wise
rotation.

const std::list<Magick::PathArcArgs>
&coordinates_

PathArcRel const Magick::PathArcArgs
&coordinates_

const std::list<Magick::PathArcArgs>
&coordinates_

22.5 Magick::Exception Classes

Exception represents the base class of objects thrown when ImageMagick
reports an error. Magick++ throws C++ exceptions synchronous with the
operation when an error is detected. This allows errors to be trapped within
the enclosing code (perhaps the code to process a single image) while
allowing the code to be written simply.

A try/catch block should be placed around any sequence of operations which
can be considered a unit of work. For example, if your program processes
lists of images and some of these images may be defective, by placing the
try/catch block around the entire sequence of code that processes one image
(including instantiating the image object), you can minimize the overhead of
error checking while ensuring that all objects created to deal with that
object are safely destroyed (C++ exceptions unroll the stack until the
enclosing try block, destroying any created objects).

The pseudocode for the main loop of your program may look like:

for each image in list
try {

create image object
read image
process image
save result

}
catch(ErrorFileOpen &error)
{

process Magick++ file open error
}
catch(Exception &error)
{

process any Magick++ error
}
catch(exception &error)
{

process any other exceptions derived from standard C++ exception
}
catch(...)
{

process *any* exception (last-ditch effort)
}

This catches errors opening a file first, followed by any Magick++ exception
if the exception was not caught previously.

The Exception class is derived from the C++ standard exception class. This
means that it contains a C++ string containing additional information about
the error (e.g to display to the user). Obtain access to this string via the
what() method. For example:

catch(Exception &error_)
{

cout << "Caught exception: " << error_.what() << endl;
}

The classes Warning and Error derive from the Exception class. Exceptions
derived from Warning are thrown to represent non-fatal errors which may
effect the completeness or quality of the result (e.g. one image provided as
an argument to montage is defective). In most cases, a Warning exception may
be ignored by catching it immediately, processing it (e.g. printing a
diagnostic) and continuing on. Exceptions derived from Error are thrown to
represent fatal errors that can not produce a valid result (e.g. attempting
to read a file which does not exist).

The specific derived exception classes are shown in the following tables:

22 C++ API Methods 211

Warning Sub-Classes

Warning Warning Description

WarningUndefined Unspecified warning type.

WarningResourceLimit A program resource is exhausted (e.g. not enough
memory).

WarningXServer An X resource is unavailable.

WarningOption An option was malformed or out of range.

WarningDelegate An ImageMagick delegate returned an error.

WarningMissingDelegate The image type can not be read or written because
the appropriate Delegate is missing.

WarningCorruptImage The image file is corrupt (or otherwise can’t be
read).

WarningFileOpen The image file could not be opened (permission
problem, wrong file type, or does not exist).

WarningBlob A binary large object could not be allocated.

WarningCache Pixels could not be saved to the pixel cache.

Error Sub-Classes

Error Error Description

ErrorUndefined Unspecified error type.

ErrorResourceLimit A program resource is exhausted (e.g. not enough
memory).

ErrorXServer An X resource is unavailable.

ErrorOption An option was malformed or out of range.

ErrorDelegate An ImageMagick delegate returned an error.

ErrorMissingDelegate The image type can not be read or written because the
appropriate Delegate is missing.

ErrorCorruptImage The image file is corrupt (or otherwise can’t be
read).

ErrorFileOpen The image file could not be opened (permission
problem, wrong file type, or does not exist).

ErrorBlob A binary large object could not be allocated.

ErrorCache Pixels could not be saved to the pixel cache.

22.6 Magick::Geometry

Geometry provides a convenient means to specify a geometry argument. The
object may be initialized from a C string or C++ string containing a
geometry specification. It may also be initialized by more efficient
parameterized constructors.

X11 Geometry Specifications

X11 geometry specifications are in the form
"<width>x<height>{+-}<xoffset>{+-}<yoffset>" (where width, height, xoffset,
and yoffset are numbers) for specifying the size and placement location for
an object.

The width and height parts of the geometry specification are measured in
pixels. The xoffset and yoffset parts are also measured in pixels and are
used to specify the distance of the placement coordinate from the left and
top edges of the image, respectively.

+xoffset The left edge of the object is to be placed xoffset pixels in
from the left edge of the image.

-xoffset The left edge of the object is to be placed outside the image,
xoffset pixels from the left edge of the image.

The Y offset has similar meanings:

+yoffset The top edge of the object is to be yoffset pixels below the top
edge of the image.

-yoffset The top edge of the object is to be outside the image, yoffset
pixels above the top edge of the image.

Offsets must be given as pairs; in other words, in order to specify either
xoffset or yoffset both must be present.

ImageMagick Extensions To X11 Geometry Specifications

ImageMagick has added a number of qualifiers to the standard geometry string
for use when resizing images. The form of an extended geometry string is
"<width>x<height>{+-}<xoffset>{+-}<yoffset>{%}{!}{<}{>}". Extended geometry
strings should only be used when resizing an image. Using an extended
geometry string for other applications may cause the API call to fail. The
available qualifiers are shown in the following table:

ImageMagick Geometry Qualifiers

Qualifier Description

% Interpret width and height as a percentage of the current size.

! Resize to width and height exactly, loosing original aspect
ratio.

< Resize only if the image is smaller than the geometry
specification.

> Resize only if the image is greater than the geometry
specification.

Postscript Page Size Extension To Geometry Specifications

22 C++ API Methods 213

Any geometry string specification supplied to the Geometry contructor is
considered to be a Postscript page size nickname if the first character is
not numeric. The Geometry constructor converts these page size
specifications into the equivalent numeric geometry string specification
(preserving any offset component) prior to conversion to the internal object
format. Postscript page size specifications are short-hand for the pixel
geometry required to fill a page of that size. Since the 11x17 inch page
size used in the US starts with a digit, it is not supported as a Postscript
page size nickname. Instead, substitute the geometry specification
"792x1224>" when 11x17 output is desired.

An example of a Postscript page size specification is "letter+43+43>".

Postscript Page Size Nicknames

Postscript Page Size Nickname Equivalent Extended Geometry Specification

Ledger 1224x792>

Legal 612x1008>

Letter 612x792>

LetterSmall 612x792>

ArchE 2592x3456>

ArchD 1728x2592>

ArchC 1296x1728>

ArchB 864x1296>

ArchA 648x864>

A0 2380x3368>

A1 1684x2380>

A2 1190x1684>

A3 842x1190>

A4 595x842>

A4Small 595x842>

A5 421x595>

A6 297x421>

A7 210x297>

A8 148x210>

A9 105x148>

A10 74x105>

B0 2836x4008>

B1 2004x2836>

B2 1418x2004>

B3 1002x1418>

B4 709x1002>

214 ImageMagick

B5 501x709>

C0 2600x3677>

C1 1837x2600>

C2 1298x1837>

C3 918x1298>

C4 649x918>

C5 459x649>

C6 323x459>

Flsa 612x936>

Flse 612x936>

HalfLetter 396x612>

Geometry Methods

Geometry provides methods to initialize its value from strings, from a set
of parameters, or via attributes. The methods available for use in Geometry
are shown in the following table:

Geometry Methods

Method Return Type Signature(s) Description

unsigned int width_,
unsigned int height_,
unsigned int xOff_ = 0, Construct X11 geometry

Geometry unsigned int yOff_ = 0, via explicit
bool xNegative_ = parameters.
false, bool yNegative_
= false

const string Construct geometry from
geometry_ C++ string

const char * Construct geometry from
geometry_ C string

width void unsigned int width_ Width

unsigned int void

height void unsigned int height_ Height

unsigned int void

xOff void unsigned int xOff_ X offset from origin

int void

yOff void unsigned int yOff_ Y offset from origin

int void

Sign of X offset
xNegative void bool xNegative_ negative? (X origin at

right)

22 C++ API Methods 215

bool void

Sign of Y offset
yNegative void bool yNegative_ negative? (Y origin at

bottom)

bool void

Width and height are
percent void bool percent_ expressed as

percentages

bool void

Resize without
aspect void bool aspect_ preserving aspect ratio

(!)

bool void

greater void bool greater_ Resize if image is
greater than size (>)

bool void

less void bool less_ Resize if image is less
than size (<)

bool void

isValid void bool isValid_ Does object contain
valid geometry?

bool void

operator = const const string geometry_ Set geometry via C++
Geometry& string

operator = const const char * geometry_ Set geometry via C
Geometry& string

operator Obtain C++ string
string string Geometry& representation of

geometry

operator<< ostream& ostream& stream_, const Stream onto ostream
Geometry& geometry_

22.7 Magick::Image Class

Quick Contents

* BLOBs
* Constructors
* Image Manipulation Methods
* Image Attributes
* Raw Image Pixel Access

--
Image is the primary object in Magick++ and represents a single image frame
(see design). The STL interface must be used to operate on image sequences
or images (e.g. of format GIF, TIFF, MIFF, Postscript, & MNG) which are
comprized of multiple image frames. Individual frames of a multi-frame image
may be requested by adding array-style notation to the end of the file name
(e.g. "animation.gif[3]" retrieves the fourth frame of a GIF animation.
Various image manipulation operations may be applied to the image.
Attributes may be set on the image to influence the operation of the
manipulation operations. The Pixels class provides low-level access to image
pixels. As a convenience, including <Magick++.h> is sufficient in order to
use the complete Magick++ API. The Magick++ API is enclosed within the
Magick namespace so you must either add the prefix "Magick::" to each
class/enumeration name or add the statement "using namespace Magick;" after
including the Magick++.h header.

The preferred way to allocate Image objects is via automatic allocation (on
the stack). There is no concern that allocating Image objects on the stack
will excessively enlarge the stack since Magick++ allocates all large data
objects (such as the actual image data) from the heap. Use of automatic
allocation is preferred over explicit allocation (via new) since it is much
less error prone and allows use of C++ scoping rules to avoid memory leaks.
Use of automatic allocation allows Magick++ objects to be assigned and
copied just like the C++ intrinsic data types (e.g. ’int’), leading to clear
and easy to read code. Use of automatic allocation leads to naturally
exception-safe code since if an exception is thrown, the object is
automatically deallocated once the stack unwinds past the scope of the
allocation (not the case for objects allocated via new).

Image is very easy to use. For example, here is a the source to a program
which reads an image, crops it, and writes it to a new file (the exception
handling is optional but strongly recommended):

#include <Magick++.h>
#include <iostream>
using namespace std;
using namespace Magick;
int main(int argc,char **argv)
{

try {
// Create an image object and read an image
Image image("girl.gif");

// Crop the image to specified size
// (Geometry implicitly initialized by char *)
image.crop("100x100+100+100");

// Write the image to a file
image.write("x.gif");

}
catch(Exception &error_)

{
cout << "Caught exception: " << error_.what() << endl;
return 1;

}
return 0;

}

22 C++ API Methods 217

The following is the source to a program which illustrates the use of
Magick++’s efficient reference-counted assignment and copy-constructor
operations which minimize use of memory and eliminate unncessary copy
operations (allowing Image objects to be efficiently assigned, and copied
into containers). The program accomplishes the following:

1. Read master image.
2. Assign master image to second image.
3. Zoom second image to the size 640x480.
4. Assign master image to a third image.
5. Zoom third image to the size 800x600.
6. Write the second image to a file.
7. Write the third image to a file.

#include <Magick++.h>
#include <iostream>
using namespace std;
using namespace Magick;
int main(int argc,char **argv)
{

Image master("horse.jpg");
Image second = master;
second.zoom("640x480");
Image third = master;
third.zoom("800x600");
second.write("horse640x480.jpg");
third.write("horse800x600.jpg");
return 0;

}

During the entire operation, a maximum of three images exist in memory and
the image data is never copied.

The following is the source for another simple program which creates a 100
by 100 pixel white image with a red pixel in the center and writes it to a
file:

#include <Magick++.h>
using namespace std;
using namespace Magick;
int main(int argc,char **argv)
{

Image image("100x100", "white");
image.pixelColor(49, 49, "red");
image.write("red_pixel.png");
return 0;

}

If you wanted to change the color image to grayscale, you could add the
lines:

image.quantizeColorSpace(GRAYColorspace);
image.colors(256);
image.quantize();

or, more simply:

image.type(GrayscaleType);

prior to writing the image.

BLOBs

While encoded images (e.g. JPEG) are most often written-to and read-from a
disk file, encoded images may also reside in memory. Encoded images in
memory are known as BLOBs (Binary Large OBjects) and may be represented
using the Blob class. The encoded image may be initially placed in memory by
reading it directly from a file, reading the image from a database,

218 ImageMagick

memory-mapped from a disk file, or could be written to memory by Magick++.
Once the encoded image has been placed within a Blob, it may be read into a
Magick++ Image via a constructor or read(). Likewise, a Magick++ image may
be written to a Blob via write().

An example of using Image to write to a Blob follows:

#include <Magick++.h>
using namespace std;
using namespace Magick;
int main(int argc,char **argv)
{

// Read GIF file from disk
Image image("giraffe.gif");

// Write to BLOB in JPEG format
Blob blob;
image.magick("JPEG") // Set JPEG output format
image.write(&blob);

[Use BLOB data (in JPEG format) here]

return 0;
}

likewise, to read an image from a Blob, you could use one of the following
examples:

[Entry condition for the following examples is that data is pointer to
encoded image data and length represents the size of the data]

Blob blob(data, length);
Image image(blob);

or

Blob blob(data, length);
Image image;
image.read(blob);

some images do not contain their size or format so the size and format must
be specified in advance:

Blob blob(data, length);
Image image;
image.size("640x480")
image.magick("RGBA");
image.read(blob);

Constructors

Image may be constructed in a number of ways. It may be constructed from a
file, a URL, or an encoded image (e.g. JPEG) contained in an in-memory BLOB.
The available Image constructors are shown in the following table:

Image Constructors

Signature Description

Construct Image by reading from file or URL
const std::string specified by imageSpec_. Use array notation
&imageSpec_ (e.g. filename[9]) to select a specific scene

from a multi-frame image.

const Geometry &size_, Construct a blank image canvas of specified size
const Color &color_ and color

22 C++ API Methods 219

Construct Image by reading from encoded image
data contained in an in-memory BLOB. Depending
on the constructor arguments, the Blob size,
depth, magick (format) may also be specified.
Some image formats require that size be
specified. The default ImageMagick uses for

const Blob &blob_ depth depends on the compiled-in Quantum size (8
or 16). If ImageMagick’s Quantum size does not
match that of the image, the depth may need to
be specified. ImageMagick can usually
automatically detect the image’s format. When a
format can’t be automatically detected, the
format (magick) must be specified.

const Blob &blob_, const Geometry &size_

const Blob &blob_, const Geometry &size,
unsigned int depth

const Blob &blob_, const Geometry &size,
unsigned int depth_, const string &magick_

const Blob &blob_, const Geometry &size, const
string &magick_

Construct a new Image based on an array of image
pixels. The pixel data must be in scanline order
top-to-bottom. The data can be character, short
int, integer, float, or double. Float and double
require the pixels to be normalized [0..1]. The
other types are [0..MaxRGB]. For example, to
create a 640x480 image from unsigned
red-green-blue character data, use

Image image(640, 480, "RGB", 0, pixels);

The parameters are as follows:

width_ Width in pixels of the image.

const unsigned int height_ Height in pixels of the image.
width_,
const unsigned int
height_, This character string can be any
std::string map_, combination or order of R = red, G =
const StorageType type_, map_ green, B = blue, A = alpha, C = cyan, Y
const void *pixels_ = yellow M = magenta, and K = black. The

ordering reflects the order of the
pixels in the supplied pixel array.

Pixel storage type (CharPixel,
type_ ShortPixel, IntegerPixel, FloatPixel, or

DoublePixel)

This array of values contain the pixel
components as defined by the map_ and

pixels_ type_ parameters. The length of the
arrays must equal the area specified by
the width_ and height_ values and type_
parameters.

Image Manipulation Methods

220 ImageMagick

Image supports access to all the single-image (versus image-list)
manipulation operations provided by the ImageMagick library. If you must
process a multi-image file (such as an animation), the STL interface, which
provides a multi-image abstraction on top of Image, must be used.

The operations supported by Image are shown in the following table:

Image Image Manipulation Methods

Method Signature(s) Description

addNoise NoiseType noiseType_ Add noise to image with specified noise
type.

const std::string
annotate &text_, const Annotate using specified text, and

Geometry &location_ placement location

string text_, const Annotate using specified text, bounding
Geometry area, and placement gravity. If
&boundingArea_, boundingArea_ is invalid, then bounding
GravityType gravity_ area is entire image.

const std::string
&text_, const Annotate with text using specified
Geometry text, bounding area, placement gravity,
&boundingArea_, and rotation. If boundingArea_ is
GravityType invalid, then bounding area is entire
gravity_, double image.
degrees_,

const std::string
&text_, GravityType Annotate with text (bounding area is
gravity_ entire image) and placement gravity.

Blur image. The radius_ parameter
const double radius_ specifies the radius of the Gaussian,

blur = 1, const double in pixels, not counting the center
sigma_ = 0.5 pixel. The sigma_ parameter specifies

the standard deviation of the
Laplacian, in pixels.

const Geometry Border image (add border to image).
border &geometry_ = The color of the border is specified by

"6x6+0+0" the borderColor attribute.

Extract channel from image. Use this
option to extract a particular channel

channel ChannelType layer_ from the image. MatteChannel for
example, is useful for extracting the
opacity values from an image.

Charcoal effect image (looks like
charcoal sketch). The radius_ parameter

const double radius_ specifies the radius of the Gaussian,
charcoal = 1, const double in pixels, not counting the center

sigma_ = 0.5 pixel. The sigma_ parameter specifies
the standard deviation of the
Laplacian, in pixels.

chop const Geometry Chop image (remove vertical or
&geometry_ horizontal subregion of image)

const unsigned int
opacityRed_, const
unsigned int Colorize image with pen color, using

colorize opacityGreen_, const specified percent opacity for red,

22 C++ API Methods 221

unsigned int green, and blue quantums.
opacityBlue_, const
Color &penColor_

const unsigned int
opacity_, const Colorize image with pen color, using
Color &penColor_ specified percent opacity.

Comment image (add comment string to
image). By default, each image is
commented with its file name. Use
this method to assign a specific

comment const string comment to the image. Optionally you
&comment_

can include the image filename, type,
width, height, or other image
attributes by embedding special format
characters.

const Image
&compositeImage_,
int xOffset_, int Compose an image onto the current image

composite yOffset_, at offset specified by xOffset_,
CompositeOperator yOffset_ using the composition
compose_ = algorithm specified by compose_.
InCompositeOp

const Image
&compositeImage_,
const Geometry Compose an image onto the current image
&offset_, at offset specified by offset_ using
CompositeOperator the composition algorithm specified by
compose_ = compose_.
InCompositeOp

const Image
&compositeImage_,
GravityType Compose an image onto the current image
gravity_, with placement specified by gravity_
CompositeOperator using the composition algorithm
compose_ = specified by compose_.
InCompositeOp

contrast unsigned int Contrast image (enhance intensity
sharpen_ differences in image)

Convolve image. Applies a
user-specfied convolution to the image.

unsigned int order_, The order_ parameter represents the
convolve const double number of columns and rows in the

*kernel_ filter kernel, and kernel_ is a
two-dimensional array of doubles
representing the convolution kernel to
apply.

crop const Geometry Crop image (subregion of original
&geometry_ image)

cycleColormap int amount_ Cycle image colormap

despeckle void Despeckle image (reduce speckle noise)

Display image on screen.
Caution: if an image format is is not
compatable with the display visual

display void (e.g. JPEG on a colormapped display)
then the original image will be

222 ImageMagick

altered. Use a copy of the original if
this is a problem.

draw const Drawable Draw shape or text on image.
&drawable_

Draw shapes or text on image using a
const set of Drawable objects contained in an
std::list<Drawable> STL list. Use of this method improves
&drawable_ drawing performance and allows batching

draw objects together in a list for
repeated use.

Edge image (hilight edges in image).
edge unsigned int radius_ The radius is the radius of the pixel

= 0.0 neighborhood.. Specify a radius of zero
for automatic radius selection.

Emboss image (hilight edges with 3D
effect). The radius_ parameter

const double radius_ specifies the radius of the Gaussian,
emboss = 1, const double in pixels, not counting the center

sigma_ = 0.5 pixel. The sigma_ parameter specifies
the standard deviation of the
Laplacian, in pixels.

enhance void Enhance image (minimize noise)

equalize void Equalize image (histogram equalization)

erase void Set all image pixels to the current
background color.

flip void Flip image (reflect each scanline in
the vertical direction)

unsigned int x_, Flood-fill color across pixels that
floodFill- unsigned int y_, match the color of the target pixel and
Color const Color are neighbors of the target pixel. Uses

&fillColor_ current fuzz setting when determining
color match.

const Geometry
&point_, const Color
&fillColor_

unsigned int x_, Flood-fill color across pixels starting
unsigned int y_, at target-pixel and stopping at pixels
const Color matching specified border color. Uses
&fillColor_, const current fuzz setting when determining
Color &borderColor_ color match.

const Geometry
&point_, const Color
&fillColor_, const
Color &borderColor_

const long x_, const
long y_, const Floodfill pixels matching color (within

floodFillOpacityunsigned int fuzz factor) of target pixel(x,y) with
opacity_, const replacement opacity value using method.
PaintMethod method_

unsigned int x_, Flood-fill texture across pixels that

22 C++ API Methods 223

floodFill- unsigned int y_, match the color of the target pixel and
Texture const Image are neighbors of the target pixel. Uses

&texture_ current fuzz setting when determining
color match.

const Geometry
&point_, const Image
&texture_

unsigned int x_, Flood-fill texture across pixels
unsigned int y_, starting at target-pixel and stopping
const Image at pixels matching specified border
&texture_, const color. Uses current fuzz setting when
Color &borderColor_ determining color match.

const Geometry
&point_, const Image
&texture_, const
Color &borderColor_

flop void Flop image (reflect each scanline in
the horizontal direction)

const Geometry
frame &geometry_ = Add decorative frame around image

"25x25+6+6"

unsigned int width_,
unsigned int
height_, int x_, int
y_, int innerBevel_
= 0, int outerBevel_
= 0

gamma double gamma_ Gamma correct image (uniform red,
green, and blue correction).

double gammaRed_,
double gammaGreen_, Gamma correct red, green, and blue
double gammaBlue_ channels of image.

Gaussian blur image. The number of
neighbor pixels to be included in the
convolution mask is specified by

gaussianBlur double width_, ’width_’. For example, a width of one
double sigma_ gives a (standard) 3x3 convolution

mask. The standard deviation of the
Gaussian bell curve is specified by
’sigma_’.

implode double factor_ Implode image (special effect)

Assign a label to an image. Use this
option to assign a specific label to
the image. Optionally you can include
the image filename, type, width,
height, or scene number in the label by
embedding special format characters.

label const string &label_ If the first character of string is @,
the image label is read from a file
titled by the remaining characters in
the string. When converting to
Postscript, use this option to specify
a header string to print above the
image.

magnify void Magnify image by integral size

224 ImageMagick

Remap image colors with closest color
from reference image. Set dither_ to
true in to apply Floyd/Steinberg error

const Image diffusion to the image. By default,
map &mapImage_ , bool color reduction chooses an optimal

dither_ = false set of colors that best represent the
original image. Alternatively, you can
choose a particular set of colors
from an image file with this option.

const Color
&target_, unsigned

matteFloodfill int opacity_, long Floodfill designated area with a
x_, long y_, replacement opacity value.
PaintMethod method_

Filter image by replacing each pixel
medianFilter const double radius_ component with the median color in a

= 0.0
circular neighborhood

minify void Reduce image by integral size

Prepare to update image. Ensures that
there is only one reference to the
underlying image so that the underlying

modifyImage void image may be safely modified without
effecting previous generations of the
image. Copies the underlying image to a
new image if necessary.

double brightness_,
modulate double saturation_, Modulate percent hue, saturation, and

double hue_ brightness of an image

Negate colors in image. Replace every
pixel with its complementary color

negate bool grayscale_ = (white becomes black, yellow becomes
false

blue, etc.). Set grayscale to only
negate grayscale values in image.

Normalize image (increase contrast by
normalize void normalizing the pixel values to span

the full range of color values).

oilPaint unsigned int radius_ Oilpaint image (image looks like oil
= 3 painting)

Set or attenuate the opacity channel in
the image. If the image pixels are
opaque then they are set to the
specified opacity value, otherwise they
are blended with the supplied opacity

opacity unsigned int value. The value of opacity_ ranges
opacity_

from 0 (completely opaque) to MaxRGB.
The defines OpaqueOpacity and
TransparentOpacity are available to
specify completely opaque or completely
transparent, respectively.

const Color
opaque &opaqueColor_, const Change color of pixels matching

Color &penColor_ opaqueColor_ to specified penColor_.

Ping is similar to read except only

22 C++ API Methods 225

enough of the image is read to
determine the image columns, rows, and

ping const std::string filesize. The columns, rows, and
&imageSpec_

fileSize attributes are valid after
invoking ping. The image data is not
valid after calling ping.

Quantize image (reduce number of
quantize bool measureError_ = colors). Set measureError_ to true in

false
order to calculate error attributes.

const Geometry
Raise image (lighten or darken the

raise &geometry_ = edges of an image to give a 3-D raised
"6x6+0+0", bool
raisedFlag_ = false or lowered effect)

read const string Read image into current object
&imageSpec_

Read image of specified size into
current object. This form is useful for
images that do not specifiy their size

const Geometry or to specify a size hint for decoding
an image. For example, when reading a

&size_, const Photo CD, JBIG, or JPEG image, a size
std::string
&imageSpec_ request causes the library to return an

image which is the next resolution
greater or equal to the specified size.
This may result in memory and time
savings.

Read encoded image of specified size
from an in-memory BLOB into current
object. Depending on the method
arguments, the Blob size, depth, and
format may also be specified. Some
image formats require that size be
specified. The default ImageMagick uses

const Blob &blob_ for depth depends on its Quantum size
(8 or 16). If ImageMagick’s Quantum
size does not match that of the image,
the depth may need to be specified.
ImageMagick can usually automatically
detect the image’s format. When a
format can’t be automatically detected,
the format must be specified.

const Blob &blob_,
const Geometry
&size_

const Blob &blob_,
const Geometry
&size_, unsigned int
depth_

const Blob &blob_,
const Geometry
&size_, unsigned
short depth_, const
string &magick_

const Blob &blob_,
const Geometry

226 ImageMagick

&size_, const string
&magick_

Read image based on an array of image
pixels. The pixel data must be in
scanline order top-to-bottom. The data
can be character, short int, integer,
float, or double. Float and double
require the pixels to be normalized
[0..1]. The other types are
[0..MaxRGB]. For example, to create a
640x480 image from unsigned
red-green-blue character data, use

image.read(640, 480, "RGB", 0,
pixels);

The parameters are as follows:

width_ Width in pixels of the image.

const unsigned int height_Height in pixels of the image.
width_, const
unsigned int This character string can be
height_, std::string any combination or order of R
map_, const = red, G = green, B = blue, A
StorageType type_, = alpha, C = cyan, Y = yellow
const void *pixels_ map_ M = magenta, and K = black.

The ordering reflects the
order of the pixels in the
supplied pixel array.

Pixel storage type (CharPixel,
type_ ShortPixel, IntegerPixel,

FloatPixel, or DoublePixel)

This array of values contain
the pixel components as
defined by the map_ and type_

pixels_parameters. The length of the
arrays must equal the area
specified by the width_ and
height_ values and type_
parameters.

reduceNoise void Reduce noise in image using a noise
peak elimination filter.

unsigned int order_

Roll image (rolls image vertically and
roll int columns_, int horizontally) by specified number of

rows_
columnms and rows)

rotate double degrees_ Rotate image counter-clockwise by
specified number of degrees.

sample const Geometry Resize image by using pixel sampling
&geometry_ algorithm

scale const Geometry Resize image by using simple ratio
&geometry_ algorithm

22 C++ API Methods 227

Segment (coalesce similar image
components) by analyzing the histograms
of the color components and identifying
units that are homogeneous with the

double fuzzy c-means technique. Also uses
clusterThreshold_ = quantizeColorSpace and verbose image

attributes. Specify clusterThreshold_,
segment 1.0, as the number of pixels each

double
smoothingThreshold_ cluster must exceed the cluster
= 1.5 threshold to be considered valid.

SmoothingThreshold_ eliminates noise in
the second derivative of the
histogram. As the value is increased,
you can expect a smoother second
derivative. The default is 1.5.

Shade image using distant light source.
double azimuth_ = Specify azimuth_ and elevation_ as the
30, double position of the light source. By

shade elevation_ = 30, default, the shading results as a
bool colorShading_ = grayscale image.. Set colorShading_ to
false true to shade the red, green, and blue

components of the image.

Sharpen pixels in image. The radius_
const double radius_ parameter specifies the radius of the

sharpen = 1, const double Gaussian, in pixels, not counting the
sigma_ = 0.5 center pixel. The sigma_ parameter

specifies the standard deviation of the
Laplacian, in pixels.

shave const Geometry Shave pixels from image edges.
&geometry_

Shear image (create parallelogram by
sliding image by X or Y axis).
Shearing slides one edge of an image
along the X or Y axis, creating a
parallelogram. An X direction shear
slides an edge along the X axis, while
a Y direction shear slides an edge

shear double xShearAngle_, along the Y axis. The amount of the
double yShearAngle_ shear is controlled by a shear angle.

For X direction shears, x degrees is
measured relative to the Y axis, and
similarly, for Y direction shears y
degrees is measured relative to the X
axis. Empty triangles left over from
shearing the image are filled with
the color defined as borderColor.

Solarize image (similar to effect seen
solarize double factor_ = when exposing a photographic film to

50.0
light during the development process)

spread unsigned int amount_ Spread pixels randomly within image by
= 3 specified amount

stegano const Image Add a digital watermark to the image
&watermark_ (based on second image)

Create an image which appears in stereo
stereo const Image when viewed with red-blue glasses (Red

228 ImageMagick

&rightImage_
image on left, blue on right)

swirl double degrees_ Swirl image (image pixels are rotated
by degrees)

texture const Image Layer a texture on pixels matching
&texture_ image background color.

threshold double threshold_ Threshold image

transform const Geometry Transform image based on image and crop
&imageGeometry_ geometries. Crop geometry is optional.

const Geometry
&imageGeometry_,
const Geometry
&cropGeometry_

transparent const Color &color_ Add matte image to image, setting
pixels matching color to transparent.

trim void Trim edges that are the background
color from the image.

Replace image with a sharpened version
of the original image using the unsharp
mask algorithm. The radius_ parameter
specifies the radius of the Gaussian,
in pixels, not counting the center

double radius_, pixel. The sigma_ parameter specifies
unsharpmask double sigma_, the standard deviation of the Gaussian,

double amount_, in pixels. The amount_ parameter
double threshold_ specifies the percentage of the

difference between the original and the
blur image that is added back into the
original. The threshold_ parameter
specifies the threshold in pixels
needed to apply the diffence amount.

double amplitude_ =
wave 25.0, double Alter an image along a sine wave.

wavelength_ = 150.0

Write image to a file using filename
imageSpec_.
Caution: if an image format is selected
which is capable of supporting fewer

write const string colors than the original image or
&imageSpec_

quantization has been requested, the
original image will be quantized to
fewer colors. Use a copy of the
original if this is a problem.

Write image to a in-memory BLOBstored
in blob_. The magick_ parameter
specifies the image format to write
(defaults to magick). The depth_
parameter species the image depth
(defaults to depth).

Blob *blob_ Caution: if an image format is selected
which is capable of supporting fewer
colors than the original image or

22 C++ API Methods 229

quantization has been requested, the
original image will be quantized to
fewer colors. Use a copy of the
original if this is a problem.

Blob *blob_,
std::string &magick_

Blob *blob_,
std::string
&magick_, unsigned
int depth_

Write pixel data into a buffer you
supply. The data is saved either as
char, short int, integer, float or
double format in the order specified by
the type_ parameter. For example, we
want to extract scanline 1 of a 640x480
image as character data in
red-green-blue order:

image.write(0,0,640,1,"RGB",0,pixels);

The parameters are as follows:

Horizontal ordinate of
x_ left-most coordinate of

region to extract.

Vertical ordinate of top-most
y_ coordinate of region to

extract.

const int x_, const Width in pixels of the region
int y_, const columns_to extract.
unsigned int
columns_, const
unsigned int rows_, rows_ Height in pixels of the
const std::string region to extract.
&map_, const
StorageType type_, This character string can be
void *pixels_ any combination or order of R

= red, G = green, B = blue, A
map_ = alpha, C = cyan, Y =

yellow, M = magenta, and K =
black. The ordering reflects
the order of the pixels in
the supplied pixel array.

Pixel storage type
type_ (CharPixel, ShortPixel,

IntegerPixel, FloatPixel, or
DoublePixel)

This array of values contain
the pixel components as
defined by the map_ and type_

pixels_ parameters. The length of the
arrays must equal the area
specified by the width_ and
height_ values and type_
parameters.

230 ImageMagick

zoom const Geometry Zoom image to specified size.
&geometry_

Image Attributes

Image attributes are set and obtained via methods in Image. Except for
methods which accept pointer arguments (e.g. chromaBluePrimary) all methods
return attributes by value.

The supported image attributes and the method arguments required to obtain
them are shown in the following table:

Image Image Attributes

Attribute Type Get Set Signature Description
Signature

Join images into a
adjoin bool void bool flag_ single multi-image

file.

Control antialiasing
of rendered

antiAlias bool void bool flag_ Postscript and
Postscript or
TrueType fonts.
Enabled by default.

Time in 1/100ths of a
second (0 to 65535)
which must expire
before displaying the
next image in an

animation- unsigned int (0 unsigned int animated sequence.
Delay to 65535) void delay_ This option is useful

for regulating the
animation of a
sequence of GIF
images within
Netscape.

Number of iterations
animation- unsigned int to loop an animation
Iterations unsigned int void iterations_ (e.g. Netscape loop

extension) for.

background- const Color Image background
Color Color void &color_ color

Image file name to
background- const string use as the background
Texture string void &texture_ texture. Does not

modify image pixels.

Base image width
baseColumns unsigned int void (before

transformations)

Base image filename
baseFilename string void (before

transformations)

Base image height
baseRows unsigned int void (before

transformations)

borderColor Color void const Color Image border color

22 C++ API Methods 231

&color_

Return smallest
bounding box
enclosing non-border
pixels. The current

boundingBox Geometry void fuzz value is used
when discriminating
between pixels. This
is the crop bounding
box used by
crop(Geometry(0,0)).

Base color that
boxColor Color void const Color annotation text is

&boxColor_
rendered on.

Pixel cache threshold
in megabytes. Once
this threshold is
exceeded, all
subsequent pixels

cacheThreshold unsigned int unsigned int cache operations are
to/from disk. This is
a static method and
the attribute it sets
is shared by all
Image objects.

chroma- float *x_, Chromaticity blue
BluePrimary float x & y float *y_ float x_, float y_ primary point (e.g.

x=0.15, y=0.06)

chroma- float *x_, Chromaticity green
GreenPrimary float x & y float *y_ float x_, float y_ primary point (e.g.

x=0.3, y=0.6)

chroma- float *x_, Chromaticity red
RedPrimary float x & y float *y_ float x_, float y_ primary point (e.g.

x=0.64, y=0.33)

chroma- float *x_, Chromaticity white
WhitePoint float x & y float *y_ float x_, float y_ point (e.g. x=0.3127,

y=0.329)

Image storage class.
Note that conversion
from a DirectClass
image to a

classType ClassType void ClassType class_ PseudoClass image may
result in a loss of
color due to the
limited size of the
palette (256 or 65535
colors).

Associate a clip mask
image with the
current image. The
clip mask image must
have the same
dimensions as the
current image or an

clipMask Image void const Image exception is thrown.

232 ImageMagick

&clipMask_ Clipping occurs
wherever pixels are
transparent in the
clip mask image.
Clipping Pass an
invalid image to
unset an existing
clip mask.

Colors within this
distance are
considered equal. A
number of algorithms
search for a target

colorFuzz double void double fuzz_ color. By default the
color must be exact.
Use this option to
match colors that are
close to the target
color in RGB space.

unsigned int
colorMap Color unsigned int index_, const Color at color-pallet

index_ index.
Color &color_

The colorspace (e.g.
CMYK) used to
represent the image

colorSpace ColorspaceType void ColorspaceType pixel colors. Image
colorSpace_ colorSpace_ pixels are always

stored as RGB(A)
except for the case
of CMY(K).

columns unsigned int void Image width

comment string void Image comment

Image compresion
compress- CompressionType type. The default is
Type CompressionType void compressType_ the compression type

of the specified
image file.

Vertical and
horizontal resolution
in pixels of the
image. This option

density Geometry void const Geometry specifies an image
(default 72x72) &density_ density when decoding

a Postscript or
Portable Document
page. Often used with
psPageSize.

Image depth. Used to
specify the bit depth
when reading or
writing raw images
or when the output

depth unsigned int (8 void unsigned int format supports
or 16) depth_

multiple depths.
Defaults to the
quantum depth that
ImageMagick is
compiled with.

22 C++ API Methods 233

Specify (or obtain)
endian EndianType void EndianType endian_ endian option for

formats which support
it.

Tile names from
directory string void within an image

montage

fileName string void const string Image file name.
&fileName_

fileSize off_t void Number of bytes of
the image on disk

fillColor Color void const Color Color to use when
&fillColor_ filling drawn objects

Pattern image to use
fillPattern Image void const Image when filling drawn

&fillPattern_
objects.

const Rule to use when
fillRule FillRule void Magick::FillRule filling drawn

&fillRule_ objects.

Filter to use when
resizing image. The
reduction filter
employed has a
sigificant effect on
the time required to

filterType FilterTypes void FilterTypes resize an image and
filterType_ the resulting

quality. The default
filter is Lanczos
which has been shown
to produce high
quality results when
reducing most images.

Text rendering font.
If the font is a
fully qualified X
server font name, the
font is obtained from
an X server. To use

font string void const string a TrueType font,
&font_

precede the TrueType
filename with an @.
Otherwise, specify
a Postscript font
name (e.g.
"helvetica").

fontPointsize unsigned int void unsigned int Text rendering font
pointSize_ point size

const Update metrics with
std::string font type metrics

fontTypeMetrics TypeMetric &text_, using specified text,
TypeMetric and current font and

234 ImageMagick

*metrics fontPointSize
settings.

format string void Long form image
format description.

Gamma level of the
image. The same color
image displayed on
two different

double (typical workstations may
gamma range 0.8 to void look different due

2.3) to differences in the
display monitor. Use
gamma correction to
adjust for this
color difference.

geometry Geometry void Preferred size of the
image when encoding.

unsigned int
{ 0 = Disposal
not specified,
1 = Do not GIF disposal method.
dispose of This option is used
graphic, to control how

gifDispose- 3 = Overwrite unsigned int successive frames are
Method graphic with void disposeMethod_ rendered (how the

background preceding frame is
color, disposed of) when
4 = Overwrite creating a GIF
graphic with animation.
previous
graphic. }

ICC color profile.
Supplied via a Blob
since Magick++/ and
ImageMagick do not
currently support
formating this data

iccColorProfile Blob void const Blob structure directly.
&colorProfile_

Specifications are
available from the
International Color
Consortium for the
format of ICC color
profiles.

The type of
interlacing scheme
(default
NoInterlace). This
option is used to
specify the type of
interlacing scheme
for raw image
formats such as RGB
or YUV. NoInterlace
means do not
interlace,
LineInterlace uses
scanline interlacing,

interlace- InterlaceType and PlaneInterlace
Type InterlaceType void interlace_ uses plane

22 C++ API Methods 235

interlacing.
PartitionInterlace is
like PlaneInterlace
except the different
planes are saved to
individual files
(e.g. image.R,
image.G, and
image.B). Use
LineInterlace or
PlaneInterlace to
create an interlaced
GIF or progressive
JPEG image.

IPTC profile.
Supplied via a Blob
since Magick++ and
ImageMagick do not
currently support
formating this data

iptcProfile Blob void const Blob& structure directly.
iptcProfile_

Specifications are
available from the
International Press
Telecommunications
Council for IPTC
profiles.

label string void const string Image label
&label_

magick string void const string Get image format
&magick_ (e.g. "GIF")

True if the image has
transparency. If set

matte bool void bool matteFlag_ True, store matte
channel if the image
has one otherwise
create an opaque one.

matteColor Color void const Color Image matte
&matteColor_ (transparent) color

The mean error per
pixel computed when
an image is color

meanError- reduced. This
PerPixel double void parameter is only

valid if verbose is
set to true and the
image has just been
quantized.

monochrome bool void bool flag_ Transform the image
to black and white

Tile size and offset
montage- within an image
Geometry Geometry void montage. Only valid

for montage images.

The normalized max

236 ImageMagick

error per pixel
computed when an
image is color

normalized- reduced. This
MaxError double void parameter is only

valid if verbose is
set to true and the
image has just been
quantized.

The normalized mean
error per pixel
computed when an
image is color

normalized- reduced. This
MeanError double void parameter is only

valid if verbose is
set to true and the
image has just been
quantized.

The number of
packets unsigned int void runlength-encoded

packets in
the image

packetSize unsigned int void The number of bytes
in each pixel packet

Preferred size and
location of an image
canvas.

Use this option to
specify the
dimensions and
position of the
Postscript page in

page Geometry void const Geometry dots per inch or a
&pageSize_ TEXT page in pixels.

This option is
typically used in
concert with density.

Page may also be used
to position a GIF
image (such as for a
scene in an
animation)

unsigned int unsigned int x_,
pixelColor Color x_, unsigned unsigned int y_, Get/set pixel color

int y_ const Color at location x & y.
&color_

JPEG/MIFF/PNG
quality unsigned int (0 void unsigned int compression level

to 100) quality_
(default 75).

Preferred number of
colors in the image.
The actual number of
colors in the image
may be less than your

quantize- unsigned int request, but never
Colors unsigned int void colors_ more. Images with

22 C++ API Methods 237

less unique colors
than specified with
this option will have
any duplicate or
unused colors
removed.

Colorspace to
quantize colors in
(default RGB).
Empirical evidence
suggests that
distances in color
spaces such as YUV or

quantize- ColorspaceType YIQ correspond to
ColorSpace ColorspaceType void colorSpace_ perceptual color

differences more
closely than do
distances in RGB
space. These color
spaces may give
better results when
color reducing an
image.

Apply Floyd/Steinberg
error diffusion to
the image. The basic
strategy of dithering
is to trade
intensity resolution
for spatial
resolution by
averaging the
intensities of

quantize- several neighboring
Dither bool void bool flag_ pixels. Images which

suffer from severe
contouring when
reducing colors can
be improved with this
option. The
quantizeColors or
monochrome option
must be set for this
option to take
effect.

Depth of the
quantization color
classification tree.
Values of 0 or 1
allow selection of

quantize- unsigned int the optimal tree
TreeDepth unsigned int void treeDepth_ depth for the color

reduction algorithm.
Values between 2 and
8 may be used to
manually adjust the
tree depth.

rendering- RenderingIntent The type of rendering
Intent RenderingIntent void render_ intent

resolution- ResolutionType Units of image
Units ResolutionType void units_ resolution

rows unsigned int void The number of pixel

238 ImageMagick

rows in the image

scene unsigned int void unsigned int Image scene number
scene_

Image MD5 signature.
Set force_ to ’true’

signature string bool force_ to force
= false

re-computation of
signature.

Width and height of a
raw image (an image
which does not
support width and
height information).

size Geometry void const Geometry Size may also be used
&geometry_

to affect the image
size read from a
multi-resolution
format (e.g. Photo
CD, JBIG, or JPEG.

Enable or disable
strokeAntiAlias bool void bool flag_ anti-aliasing when

drawing object
outlines.

Color to use when
strokeColor Color void const Color drawing object

&strokeColor_
outlines

While drawing using a
dash pattern, specify

strokeDashOffsetunsigned int void double distance into the
strokeDashOffset_

dash pattern to start
the dash (default 0).

Specify the pattern
of dashes and gaps
used to stroke paths.
The strokeDashArray
represents a
zero-terminated array
of numbers that
specify the lengths
(in pixels) of
alternating dashes
and gaps in user

strokeDashArray const double* void const double* units. If an odd
strokeDashArray_ number of values is

provided, then the
list of values is
repeated to yield an
even number of
values. A typical
strokeDashArray_
array might contain
the members 5 3 2 0,
where the zero value
indicates the end of
the pattern array.

Specify the shape to

22 C++ API Methods 239

be used at the
corners of paths (or
other vector shapes)

strokeLineCap LineCap void LineCap lineCap_ when they are
stroked. Values of
LineJoin are
UndefinedJoin,
MiterJoin, RoundJoin,
and BevelJoin.

Specify the shape to
be used at the
corners of paths (or
other vector shapes)

strokeLineJoin LineJoin void LineJoin lineJoin_ when they are
stroked. Values of
LineJoin are
UndefinedJoin,
MiterJoin, RoundJoin,
and BevelJoin.

Specify miter limit.
When two line
segments meet at a
sharp angle and miter
joins have been
specified for
’lineJoin’, it is
possible for the

strokeMiterLimitunsigned int void unsigned int miter to extend far
miterLimit_ beyond the thickness

of the line stroking
the path. The
miterLimit’ imposes a
limit on the ratio of
the miter length to
the ’lineWidth’. The
default value of this
parameter is 4.

Stroke width for use
strokeWidth double void double when drawing vector

strokeWidth_
objects (default one)

Pattern image to use
strokePattern Image void const Image while drawing object

&strokePattern_
stroke (outlines).

subImage unsigned int void unsigned int Subimage of an image
subImage_ sequence

Number of images
subRange unsigned int void unsigned int relative to the base

subRange_
image

tileName string void const string Tile name
&tileName_

totalColors unsigned long void Number of colors in
the image

type ImageType void ImageType Image type.

240 ImageMagick

Print detailed
verbose bool void bool verboseFlag_ information about the

image

view string void const string FlashPix viewing
&view_ parameters.

X11 display to
x11Display string (e.g. void const string display to, obtain

"hostname:0.0") &display_ fonts from, or to
capture image from

xResolution double void x resolution of the
image

yResolution double void y resolution of the
image

Raw Image Pixel Access

Image pixels (of type PixelPacket) may be accessed directly via the Image
Pixel Cache. The image pixel cache is a rectangular window into the actual
image pixels (which may be in memory, memory-mapped from a disk file, or
entirely on disk). Two interfaces exist to access the Image Pixel Cache. The
interface described here (part of the Image class) supports only one view at
a time. See the Pixels class for a more abstract interface which supports
simultaneous pixel views (up to the number of rows). As an analogy, the
interface described here relates to the Pixels class as stdio’s gets()
relates to fgets(). The Pixels class provides the more general form of the
interface.

Obtain existing image pixels via getPixels(). Create a new pixel region
using setPixels().

Depending on the capabilities of the operating system, and the relationship
of the window to the image, the pixel cache may be a copy of the pixels in
the selected window, or it may be the actual image pixels. In any case
calling syncPixels() insures that the base image is updated with the
contents of the modified pixel cache. The method readPixels() supports
copying foreign pixel data formats into the pixel cache according to the
QuantumTypes. The method writePixels() supports copying the pixels in the
cache to a foreign pixel representation according to the format specified by
QuantumTypes.

The pixel region is effectively a small image in which the pixels may be
accessed, addressed, and updated, as shown in the following example:
Image image("cow.png");
// Obtain pixel region with size 60x40, and top origin at 20x30

int columns = 60;
PixelPacket *pixel_cache = image.GetPixels(20,30,columns,40);
// Set pixel at column 5, and row 10 in the pixel cache to red.

int column = 5; [Cache.png]
int row = 10;
PixelPacket *pixel =
pixel_cache+row*columns*sizeof(PixelPacket)+column;
pixel = Color("red");
// Save updated pixel cache back to underlying image
image.syncPixels();
image.write("horse.png");

The image cache supports the following methods:

22 C++ API Methods 241

Image Cache Methods

Method Returns Signature Description

int x_, int y_, Transfers pixels from
the image to the pixel

getConstPixels const unsigned int cache as defined by
PixelPacket* columns_, unsigned

int rows_ the specified
rectangular region.

Returns a pointer to
the Image pixel
indexes. Only valid
for PseudoClass images
or CMYKA images. The
pixel indexes
represent an array of
type IndexPacket, with
each entry

getConstIndexes const void corresponding to an
IndexPacket* x,y pixel position.

For PseudoClass
images, the entry’s
value is the offset
into the colormap (see
colorMap) for that
pixel. For CMYKA
images, the indexes
are used to contain
the alpha channel.

Returns a pointer to
the Image pixel
indexes corresponding
to the pixel region
requested by the last
getConstPixels,
getPixels, or
setPixels call. Only
valid for PseudoClass
images or CMYKA
images. The pixel
indexes represent an

getIndexes IndexPacket* void array of type
IndexPacket, with each
entry corresponding to
a pixel x,y position.
For PseudoClass
images, the entry’s
value is the offset
into the colormap (see
colorMap) for that
pixel. For CMYKA
images, the indexes
are used to contain
the alpha channel.

Transfers pixels from
the image to the pixel
cache as defined by

int x_, int y_, the specified
getPixels PixelPacket* unsigned int rectangular region.

columns_, unsigned Modified pixels may be
int rows_ subsequently

transferred back to
the image via
syncPixels.

242 ImageMagick

Allocates a pixel
cache region to store

int x_, int y_, image pixels as
defined by the region

setPixels PixelPacket* unsigned int rectangle. This area
columns_, unsigned
int rows_ is subsequently

transferred from the
pixel cache to the
image via syncPixels.

Transfers the image
syncPixels void void cache pixels to the

image.

Transfers one or more
pixel components from
a buffer or file into

QuantumTypes the image pixel cache
readPixels void quantum_, unsigned of an image.

char *source_, ReadPixels is
typically used to
support image
decoders.

Transfers one or more
pixel components from

QuantumTypes the image pixel cache
writePixels void quantum_, unsigned to a buffer or file.

char *destination_ WritePixels is
typically used to
support image
encoders.

22.8 Magick::Pixels

The Pixels class provides efficient access to raw image pixels. Image pixels
(of type PixelPacket) may be accessed directly via the Image Pixel Cache.
The image pixel cache is a rectangular window (a view) into the actual image
pixels (which may be in memory, memory-mapped from a disk file, or entirely
on disk). Obtain existing image pixels via get(). Create a new pixel region
using set().

Depending on the capabilities of the operating system, and the relationship
of the window to the image, the pixel cache may be a copy of the pixels in
the selected window, or it may be the actual image pixels. In any case
calling sync() insures that the base image is updated with the contents of
the modified pixel cache. The method decode() supports copying foreign pixel
data formats into the pixel cache according to the QuantumTypes. The method
encode() supports copying the pixels in the cache to a foreign pixel
representation according to the format specified by QuantumTypes.

Setting a view using the Pixels class does not cause the number of
references to the underlying image to be reduced to one. Therefore, in order
to ensure that only the current generation of the image is modified, the
Image’s modifyImage() method should be invoked to reduce the reference count
on the underlying image to one. If this is not done, then it is possible for
a previous generation of the image to be modified due to the use of
reference counting when copying or constructing an Image.

The PixelPacket* returned by the set and get methods, and the IndexPacket*
returned by the indexes method point to pixel data managed by the Pixels
class. The Pixels class is responsible for releasing resources associated
with the pixel view. This means that the pointer should never be passed to
delete() or free().

The pixel view is a small image in which the pixels may be accessed,
addressed, and updated, as shown in the following example, which produces an
image similar to the one on the right (minus lines and text):

// Create base image
Image image(Geometry(254,218), "white");

// Set image pixels to DirectClass representation
image.classType(DirectClass);

// Ensure that there is only one reference to underlying
image

image.modifyImage();

// Allocate pixel view
Pixels view(image);

// Set all pixels in region anchored at 38x36, with size
160x230 to green.

unsigned int columns = 196; unsigned int rows = 162;
Color green("green");
PixelPacket *pixels = view.get(38,36,columns,rows);
for (unsigned int row = 0; row < rows ; ++row)

for (unsigned int column = 0; column < columns ; ++column [Cache.png]
)

*pixels++=green;
view.sync();

// Set all pixels in region anchored at 86x72, with size
108x67 to yellow.

columns = 108; rows = 67;
Color yellow("yellow");
pixels = view.get(86,72,columns,rows);
for (unsigned int row = 0; row < rows ; ++row)

for (unsigned int column = 0; column < columns ;

244 ImageMagick

++column)
*pixels++=yellow;

view.sync();

// Set pixel at position 108,94 to red
*(view.get(108,94,1,1)) = Color("red");
view.sync();

Pixels supports the following methods:

Pixel Cache Methods

Method Returns Signature Description

Transfers pixels from the
image to the pixel cache as
defined by the specified

int x_, int y_, rectangular region. Modified
get PixelPacket* unsigned int columns_, pixels may be subsequently

unsigned int rows_ transferred back to the image
via sync. The value returned
is intended for pixel access
only. It should never be
deallocated.

Allocates a pixel cache region
to store image pixels as
defined by the region

int x_, int y_, rectangle. This area is
set PixelPacket* unsigned int columns_, subsequently transferred from

unsigned int rows_ the pixel cache to the image
via sync. The value returned
is intended for pixel access
only. It should never be
deallocated.

sync void void Transfers the image cache
pixels to the image.

Returns the PsuedoColor pixel
indexes corresponding to the
pixel region defined by the
last get or set call. Only
valid for PseudoColor and
CMYKA images. The pixel
indexes (an array of type
IndexPacket, which is typedef
Quantum, which is itself

indexes IndexPacket* void typedef unsigned char, or
unsigned short, depending on
the value of the QuantumDepth
define) provide the colormap
index (see colorMap) for each
pixel in the image. For CMYKA
images, the indexes represent
the matte channel. The value
returned is intended for pixel
access only. It should never
be deallocated.

x unsigned int void Left ordinate of view

y unsigned int void Top ordinate of view

columns unsigned int void Width of view

rows unsigned int void Height of view

22 C++ API Methods 245

22.9 Magick++ STL Support

Magick++ provides a set of Standard Template Libary (STL) algorithms for
operating across ranges of image frames in a container. It also provides a
set of STL unary function objects to apply an operation on image frames in a
container via an algorithm which uses unary function objects. A good example
of a standard algorithm which is useful for processing containers of image
frames is the STL for_each algorithm which invokes a unary function object
on a range of container elements.

Magick++ uses a limited set of template argument types. The current template
argument types are:

Container

A container having the properties of a Back Insertion
Sequence. Sequences support forward iterators and Back
Insertion Sequences support the additional abilty to
append an element via push_back(). Common compatable
container types are the STL <vector> and <list> template
containers. This template argument is usually used to
represent an output container in which one or more image
frames may be appended. Containers like STL <vector>
which have a given default capacity may need to have
their capacity adjusted via reserve() to a larger
capacity in order to support the expected final size .
Since Magick++ images are very small, it is likely that
the default capacity of STL <vector> is sufficient for
most situations.

InputIterator

An input iterator used to express a position in a
container. These template arguments are typically used
to represent a range of elements with first_
representing the first element to be processed and last_
representing the element to stop at. When processing the
entire contents of a container, it is handy to know that
STL containers usually provide the begin() and end()
methods to return input interators which correspond with
the first and last elements, respectively.

The following is an example of how frames from a GIF animation
"test_image_anim.gif" may be appended horizontally with the resulting image
written to the file "appended_image.miff":

#include <list>
#include <Magick++.h>
using namespace std;
using namespace Magick;

int main(int /*argc*/,char **/*argv*/)
{

list<Image> imageList;
readImages(&imageList, "test_image_anim.gif");

Image appended;
appendImages(&appended, imageList.begin(), imageList.end());
appended.write("appended_image.miff");
return 0;

}

The available Magick++ specific STL algorithms for operating on sequences of
image frames are shown in the following table:

Magick++ STL Algorithms For Image Sequences

22 C++ API Methods 247

Algorithm Signature Description

Animate a sequence of image
frames. Image frames are
displayed in succession,

animateImages InputIterator first_, creating an animated effect.
InputIterator last_ The animation options are taken

from the first image frame.
This feature is only supported
under X11 at the moment.

Append a sequence of image
frames, writing the result to
appendedImage_. All the input
image frames must have the same

Image *appendedImage_, width or height. Image frames
of the same width are stacked

appendImages InputIterator first_, top-to-bottom. Image frames of
InputIterator last_,
bool stack_ = false the same height are stacked

left-to-right. If the stack_
parameter is false, rectangular
image frames are stacked
left-to-right otherwise
top-to-bottom.

Average a sequence of image
Image *averagedImage_, frames, writing the result to

averageImages InputIterator first_, averagedImage_. All the input
InputIterator last_ image frames must be the same

size in pixels.

Merge a sequence of images.
This is useful for GIF

coalesceImages InputIterator first_, animation sequences that have
InputIterator last_ page offsets and disposal

methods. The input images are
modified in-place.

Break down an image sequence
into constituent parts. This

Container is useful for creating GIF or
MNG animation sequences. The

deconstructImages *deconstructedImages_, input sequence is specified by
InputIterator first_,
InputIterator last_ first_ and last_, and the

deconstruted images are
returned via
deconstructedImages_.

Display a sequence of image
frames. Through use of a pop-up
menu, image frames may be
selected in succession. This
feature is fully supported
under X11 but may have only
limited support in other

displayImages InputIterator first_, environments.
InputIterator last_

Caution: if an image format is
is not compatable with the
display visual (e.g. JPEG on a
colormapped display) then the
original image will be altered.
Use a copy of the original if
this is a problem.

Merge a sequence of image
frames which represent image

248 ImageMagick

layers into a single composited
Image *flattendImage_, representation. The

flattenImages InputIterator first_, flattendImage_ parameter points
InputIterator last_ to an existing Image to update

with the flattened image. This
function is useful for
combining Photoshop layers into
a single image.

Replace the colors of a
InputIterator first_, sequence of images with the
InputIterator last_, closest color from a reference

mapImages const Image& mapImage_, image. Set dither_ to true to
bool dither_, bool enable dithering. Set
measureError_ = false measureError_ to true in order

to evaluate quantization error.

Create a composite image by
combining several separate
image frames. Multiple frames
may be generated in the output

Container container montageImages_
*montageImages_, depending on the tile setting

and the number of image frames
montageImages InputIterator first_, montaged. Montage options are

InputIterator last_,
const Montage provided via the parameter
&montageOpts_ montageOpts_. Options set in

the first image frame
(backgroundColor,borderColor,
matteColor, penColor,font, and
fontPointsize) are also used as
options by montageImages().

Morph a seqence of image
frames. This algorithm expands

Container the number of image frames
*morphedImages_, (output to the container

morphImages InputIterator first_, morphedImages_) by adding the
InputIterator last_, number of intervening frames
unsigned int frames_ specified by frames_ such that

the original frames morph
(blend) into each other when
played as an animation.

Inlay a number of images to
form a single coherent picture.

Image *mosaicImage_, The mosicImage_ argument is
mosaicImages InputIterator first_, updated with a mosaic

InputIterator last_ constructed from the image
sequence represented by first_
through last_.

Read a sequence of image frames
Container *sequence_, into existing container

readImages const std::string (appending to container
&imageSpec_ sequence_) with image names

specified in the string
imageSpec_.

Read a sequence of image frames
Container *sequence_, into existing container
const Blob &blob_ (appending to container

sequence_) from Blob blob_.

Write images in container to
file specified by string
imageSpec_. Set adjoin_ to
false to write a set of image

22 C++ API Methods 249

frames via a wildcard
imageSpec_ (e.g.

InputIterator first_, image%02d.miff).
InputIterator last_, The wildcard must be one of

writeImages const std::string %0Nd, %0No, or %0Nx.
&imageSpec_, bool Caution: if an image format is
adjoin_ = true selected which is capable of

supporting fewer colors than
the original image or
quantization has been
requested, the original image
will be quantized to fewer
colors. Use a copy of the
original if this is a problem.

Write images in container to
in-memory BLOB specified by
Blob blob_. Set adjoin_ to
false to write a set of image
frames via a wildcard
imageSpec_ (e.g.

InputIterator first_, image%02d.miff).
InputIterator last_, Caution: if an image format is
Blob *blob_, bool selected which is capable of
adjoin_ = true supporting fewer colors than

the original image or
quantization has been
requested, the original image
will be quantized to fewer
colors. Use a copy of the
original if this is a problem.

InputIterator first_, Quantize colors in images using
current quantization settings.

quantizeImages InputIterator last_, Set measureError_ to true in
bool measureError_ =
false order to measure quantization

error.

Magick++ Unary Function Objects

Magick++ unary function objects inherit from the STL unary_function template
class . The STL unary_function template class is of the form

unary_function<Arg, Result>

and expects that derived classes implement a method of the form:

Result operator()(Arg argument_);

which is invoked by algorithms using the function object. In the case of
unary function objects defined by Magick++, the invoked function looks like:

void operator()(Image &image_);

with a typical implementation looking similar to:

void operator()(Image &image_)
{

image_.contrast(_sharpen);
}

where contrast is an Image method and _sharpen is an argument stored within
the function object by its contructor. Since constructors may be
polymorphic, a given function object may have several constructors and

250 ImageMagick

selects the appropriate Image method based on the arguments supplied.

In essence, unary function objects (as provided by Magick++) simply provide
the means to construct an object which caches arguments for later use by an
algorithm designed for use with unary function objects. There is a unary
function object corresponding each algorithm provided by the Image class and
there is a contructor available compatable with each synonymous method in
the Image class.

The unary function objects that Magick++ provides to support manipulating
images are shown in the following table:

Magick++ Unary Function Objects For Image Manipulation

Function Object Constructor Signatures(s) Description

addNoiseImage NoiseType noiseType_ Add noise to image with
specified noise type.

Annotate with text using
specified text, bounding
area, placement gravity,

annotateImage const std::string &text_, and rotation. If
const Geometry &location_

boundingArea_ is invalid,
then bounding area is
entire image.

Annotate using specified
std::string text_, const text, bounding area, and
Geometry &boundingArea_, placement gravity. If
GravityType gravity_ boundingArea_ is invalid,

then bounding area is
entire image.

Annotate with text using
const std::string &text_, specified text, bounding

area, placement gravity,
const Geometry and rotation. If
&boundingArea_, GravityType
gravity_, double degrees_, boundingArea_ is invalid,

then bounding area is
entire image.

Annotate with text
const std::string &text_, (bounding area is entire
GravityType gravity_ image) and placement

gravity.

Blur image. The radius_
parameter specifies the
radius of the Gaussian, in

blurImage const double radius_ = 1, pixels, not counting the
const double sigma_ = 0.5 center pixel. The sigma_

parameter specifies the
standard deviation of the
Laplacian, in pixels.

Border image (add border to
borderImage const Geometry &geometry_ = image). The color of the

"6x6+0+0" border is specified by the
borderColor attribute.

Charcoal effect image
(looks like charcoal
sketch). The radius_
parameter specifies the

charcoalImage const double radius_ = 1, radius of the Gaussian, in

22 C++ API Methods 251

const double sigma_ = 0.5 pixels, not counting the
center pixel. The sigma_
parameter specifies the
standard deviation of the
Laplacian, in pixels.

Chop image (remove vertical
chopImage const Geometry &geometry_ or horizontal subregion of

image)

const unsigned int
opacityRed_, const unsigned Colorize image with pen

colorizeImage int opacityGreen_, const color, using specified
unsigned int opacityBlue_, percent opacity for red,
const Color &penColor_ green, and blue quantums.

Colorize image with pen
const unsigned int opacity_, color, using specified
const Color &penColor_

percent opacity.

Comment image (add comment
string to image). By
default, each image is
commented with its file
name. Use this method to

commentImage const std::string &comment_ assign a specific comment
to the image. Optionally
you can include the image
filename, type, width,
height, or other image
attributes by embedding
special format characters.

const Image
&compositeImage_, int Compose an image onto

compositeImage xOffset_, int yOffset_, another at specified offset
CompositeOperator compose_ = and using specified
InCompositeOp algorithm

const Image
&compositeImage_, const
Geometry &offset_,
CompositeOperator compose_ =
InCompositeOp

Condense image
condenseImage void (Re-run-length encode image

in memory).

Contrast image (enhance
contrastImage unsigned int sharpen_ intensity differences in

image)

cropImage const Geometry &geometry_ Crop image (subregion of
original image)

cycleColormap-
Image int amount_ Cycle image colormap

despeckleImage void Despeckle image (reduce
speckle noise)

drawImage const Drawable &drawable_ Draw shape or text on
image.

252 ImageMagick

Draw shapes or text on
image using a set of
Drawable objects contained
in an STL list. Use of this

const std::list<Drawable> method improves drawing
&drawable_

performance and allows
batching draw objects
together in a list for
repeated use.

Edge image (hilight edges
in image). The radius is

edgeImage unsigned int radius_ = 0.0 the radius of the pixel
neighborhood.. Specify a
radius of zero for
automatic radius selection.

Emboss image (hilight edges
with 3D effect). The
radius_ parameter specifies
the radius of the Gaussian,

embossImage const double radius_ = 1, in pixels, not counting the
const double sigma_ = 0.5

center pixel. The sigma_
parameter specifies the
standard deviation of the
Laplacian, in pixels.

enhanceImage void Enhance image (minimize
noise)

equalizeImage void Equalize image (histogram
equalization)

Flip image (reflect each
flipImage void scanline in the vertical

direction)

Flood-fill color across
pixels that match the color

floodFill- unsigned int x_, unsigned of the target pixel and are
ColorImage int y_, const Color neighbors of the target

&fillColor_ pixel. Uses current fuzz
setting when determining
color match.

const Geometry &point_,
const Color &fillColor_

Flood-fill color across
pixels starting at

unsigned int x_, unsigned target-pixel and stopping
int y_, const Color at pixels matching
&fillColor_, const Color specified border color.
&borderColor_ Uses current fuzz setting

when determining color
match.

const Geometry &point_,
const Color &fillColor_,
const Color &borderColor_

Flood-fill texture across
pixels that match the color

floodFill- unsigned int x_, unsigned of the target pixel and are

22 C++ API Methods 253

TextureImage int y_, const Image neighbors of the target
&texture_ pixel. Uses current fuzz

setting when determining
color match.

const Geometry &point_,
const Image &texture_

Flood-fill texture across
pixels starting at

unsigned int x_, unsigned target-pixel and stopping
int y_, const Image at pixels matching
&texture_, const Color specified border color.
&borderColor_ Uses current fuzz setting

when determining color
match.

const Geometry &point_,
const Image &texture_, const
Color &borderColor_

Flop image (reflect each
flopImage void scanline in the horizontal

direction)

frameImage const Geometry &geometry_ = Add decorative frame around
"25x25+6+6" image

unsigned int width_,
unsigned int height_, int
x_, int y_, int innerBevel_
= 0, int outerBevel_ = 0

Gamma correct image
gammaImage double gamma_ (uniform red, green, and

blue correction).

double gammaRed_, double
gammaGreen_, double Gamma correct red, green,
gammaBlue_ and blue channels of image.

Gaussian blur image. The
number of neighbor pixels
to be included in the
convolution mask is
specified by ’width_’. For

gaussianBlurImage double width_, double sigma_ example, a width of one
gives a (standard) 3x3
convolution mask. The
standard deviation of the
Gaussian bell curve is
specified by ’sigma_’.

implodeImage double factor_ Implode image (special
effect)

Assign a label to an image.
Use this option to assign
a specific label to the
image. Optionally you can
include the image filename,
type, width, height, or
scene number in the label
by embedding special

labelImage const string &label_ format characters. If the
first character of string

254 ImageMagick

is @, the image label is
read from a file titled by
the remaining characters in
the string. When converting
to Postscript, use this
option to specify a header
string to print above the
image.

Extract layer from image.
Use this option to extract
a particular layer from

layerImage LayerType layer_ the image. MatteLayer,
for example, is useful for
extracting the opacity
values from an image.

magnifyImage void Magnify image by integral
size

Remap image colors with
closest color from
reference image. Set
dither_ to true in to apply
Floyd/Steinberg error
diffusion to the image. By

mapImage const Image &mapImage_ , default, color reduction
bool dither_ = false chooses an optimal set of

colors that best represent
the original image.
Alternatively, you can
choose a particular set
of colors from an image
file with this option.

matteFloodfill- const Color &target_, Floodfill designated area
Image unsigned int matte_, int x_, with a matte value

int y_, PaintMethod method_

Filter image by replacing
medianFilterImage const double radius_ = 0.0 each pixel component with

the median color in a
circular neighborhood

minifyImage void Reduce image by integral
size

Modulate percent hue,
modulateImage double brightness_, double saturation, and brightness

saturation_, double hue_
of an image

Negate colors in image.
Replace every pixel with
its complementary color

negateImage bool grayscale_ = false (white becomes black,
yellow becomes blue,
etc.). Set grayscale to
only negate grayscale
values in image.

Normalize image (increase
contrast by normalizing the

normalizeImage void pixel values to span the
full range of color
values).

22 C++ API Methods 255

oilPaintImage unsigned int radius_ = 3 Oilpaint image (image looks
like oil painting)

Set or attenuate the
opacity channel in the
image. If the image pixels
are opaque then they are
set to the specified
opacity value, otherwise
they are blended with the
supplied opacity value.

opacityImage unsigned int opacity_ The value of opacity_
ranges from 0 (completely
opaque) to MaxRGB. The
defines OpaqueOpacity and
TransparentOpacity are
available to specify
completely opaque or
completely transparent,
respectively.

Change color of pixels
opaqueImage const Color &opaqueColor_, matching opaqueColor_ to

const Color &penColor_
specified penColor_.

Quantize image (reduce
number of colors). Set

quantizeImage bool measureError_ = false measureError_ to true in
order to calculate error
attributes.

const Geometry &geometry_ = Raise image (lighten or
raiseImage "6x6+0+0", bool raisedFlag_ darken the edges of an

= false image to give a 3-D raised
or lowered effect)

reduceNoise- Reduce noise in image using
Image void a noise peak elimination

filter.

unsigned int order_

Roll image (rolls image
vertically and

rollImage int columns_, int rows_ horizontally) by specified
number of columnms and
rows)

Rotate image
rotateImage double degrees_ counter-clockwise by

specified number of degrees

sampleImage const Geometry &geometry_ Resize image by using pixel
sampling algorithm

scaleImage const Geometry &geometry_ Resize image by using
simple ratio algorithm

Segment (coalesce similar
image components) by
analyzing the histograms of
the color components and

256 ImageMagick

identifying units that are
homogeneous with the fuzzy
c-means technique. Also
uses quantizeColorSpace and
verbose image attributes.

double clusterThreshold_ = Specify clusterThreshold_,
segmentImage 1.0, as the number of pixels

double smoothingThreshold_ = each cluster must exceed
1.5 the cluster threshold to be

considered valid.
SmoothingThreshold_
eliminates noise in the
second derivative of the
histogram. As the value is
increased, you can expect
a smoother second
derivative. The default is
1.5.

Shade image using distant
light source. Specify
azimuth_ and elevation_ as
the position of the

double azimuth_ = 30, double light source. By default,
shadeImage elevation_ = 30, the shading results as a

bool colorShading_ = false grayscale image.. Set
colorShading_ to true to
shade the red, green, and
blue components of the
image.

Sharpen pixels in image.
The radius_ parameter
specifies the radius of the
Gaussian, in pixels, not

sharpenImage const double radius_ = 1, counting the center pixel.
const double sigma_ = 0.5

The sigma_ parameter
specifies the standard
deviation of the Laplacian,
in pixels.

shaveImage const Geometry &geometry_ Shave pixels from image
edges.

Shear image (create
parallelogram by sliding
image by X or Y axis).
Shearing slides one edge of
an image along the X or Y
axis, creating a
parallelogram. An X
direction shear slides an
edge along the X axis,
while a Y direction
shear slides an edge
along the Y axis. The

shearImage double xShearAngle_, double amount of the shear is
yShearAngle_ controlled by a shear

angle. For X direction
shears, x degrees is
measured relative to the Y
axis, and similarly, for Y
direction shears y
degrees is measured
relative to the X axis.
Empty triangles left over
from shearing the image

22 C++ API Methods 257

are filled with the
color defined as
borderColor.

Solarize image (similar to
effect seen when exposing a

solarizeImage double factor_ photographic film to light
during the development
process)

Spread pixels randomly
spreadImage unsigned int amount_ = 3 within image by specified

amount

Add a digital watermark to
steganoImage const Image &watermark_ the image (based on second

image)

Create an image which
appears in stereo when

stereoImage const Image &rightImage_ viewed with red-blue
glasses (Red image on left,
blue on right)

swirlImage double degrees_ Swirl image (image pixels
are rotated by degrees)

textureImage const Image &texture_ Layer a texture on image
background

thresholdImage double threshold_ Threshold image

Transform image based on
transformImage const Geometry image and crop geometries.

&imageGeometry_
Crop geometry is optional.

const Geometry
&imageGeometry_, const
Geometry &cropGeometry_

Add matte image to image,
transparentImage const Color &color_ setting pixels matching

color to transparent.

Trim edges that are the
trimImage void background color from the

image.

waveImage double amplitude_ = 25.0, Alter an image along a sine
double wavelength_ = 150.0 wave.

zoomImage const Geometry &geometry_ Zoom image to specified
size.

Function objects are available to set attributes on image frames which are
equivalent to methods in the Image object. These function objects allow
setting an option across a range of image frames using for_each().

The following code is an example of how the color ’red’ may be set to
transparent in a GIF animation:

list<image> images;
readImages(&images, "animation.gif");

258 ImageMagick

for_each (images.begin(), images.end(), transparentImage("red"));
writeImages(images.begin(), images.end(), "animation.gif");

The available function objects for setting image attributes are

Image Image Attributes

Attribute Type Constructor Description
Signature(s)

Join images into a
adjoinImage bool bool flag_ single multi-image

file.

Control antialiasing
of rendered

antiAliasImage bool bool flag_ Postscript and
Postscript or
TrueType fonts.
Enabled by default.

Time in 1/100ths of
a second (0 to
65535) which must
expire before
displaying the next

animation- unsigned int (0 unsigned int image in an animated
DelayImage to 65535) delay_ sequence. This

option is useful for
regulating the
animation of a
sequence of GIF
images within
Netscape.

Number of iterations
animation- unsigned int to loop an animation
IterationsImage unsigned int iterations_ (e.g. Netscape loop

extension) for.

background- const Color Image background
ColorImage Color &color_ color

background- const string Image to use as
TextureImage std::string &texture_ background texture.

borderColor- const Color
Image Color &color_ Image border color

Base color that
boxColorImage Color const Color annotation text is

&boxColor_
rendered on.

chroma- float x_, float Chromaticity blue
BluePrimaryImage float x & y y_ primary point (e.g.

x=0.15, y=0.06)

chroma- float x_, float Chromaticity green
GreenPrimaryImage float x & y y_ primary point (e.g.

x=0.3, y=0.6)

chroma- float x_, float Chromaticity red
RedPrimaryImage float x & y y_ primary point (e.g.

x=0.64, y=0.33)

22 C++ API Methods 259

chroma- float x_, float Chromaticity white
WhitePointImage float x & y y_ point (e.g.

x=0.3127, y=0.329)

Colors within this
distance are
considered equal. A
number of algorithms
search for a target

colorFuzzImage double double fuzz_ color. By default
the color must be
exact. Use this
option to match
colors that are
close to the target
color in RGB space.

unsigned int
colorMapImage Color index_, const Color at

Color &color_ color-pallet index.

The colorspace (e.g.
CMYK) used to
represent the image

colorSpaceImage ColorspaceType ColorspaceType pixel colors. Image
colorSpace_ pixels are always

stored as RGB(A)
except for the case
of CMY(K).

Image compresion
compressType- CompressionType type. The default is
Image CompressionType compressType_ the compression type

of the specified
image file.

Vertical and
horizontal
resolution in pixels
of the image. This
option specifies an

densityImage Geometry const Geometry image density when
(default 72x72) &density_

decoding a
Postscript or
Portable Document
page. Often used
with psPageSize.

Image depth. Used to
specify the bit
depth when reading
or writing raw
images or thwn the

depthImage unsigned int (8 unsigned int output format
or 16) depth_

supports multiple
depths. Defaults to
the quantum depth
that ImageMagick is
compiled with.

Specify (or obtain)
endianImage EndianType EndianType endian option for

endian_ formats which
support it.

const

260 ImageMagick

fileNameImage std::string std::string Image file name.
&fileName_

Color to use when
fillColorImage Color const Color filling drawn

&fillColor_
objects

Filter to use when
resizing image. The
reduction filter
employed has a
sigificant effect on
the time required to

filterTypeImage FilterTypes FilterTypes resize an image and
filterType_ the resulting

quality. The default
filter is Lanczos
which has been shown
to produce good
results when
reducing images.

Text rendering font.
If the font is a
fully qualified X
server font name,
the font is obtained

const from an X server.
fontImage std::string std::string To use a TrueType

&font_ font, precede the
TrueType filename
with an @.
Otherwise, specify
a Postscript font
name (e.g.
"helvetica").

fontPointsize- unsigned int Text rendering font
Image unsigned int pointSize_ point size

unsigned int
{ 0 = Disposal
not specified,
1 = Do not GIF disposal method.
dispose of This option is used
graphic, to control how

gifDispose- 3 = Overwrite unsigned int successive frames
MethodImage graphic with disposeMethod_ are rendered (how

background color, the preceding frame
is disposed of) when

4 = Overwrite creating a GIF
graphic with animation.
previous graphic.
}

The type of
interlacing scheme
(default
NoInterlace). This
option is used to
specify the type of
interlacing scheme
for raw image
formats such as RGB
or YUV. NoInterlace
means do not
interlace,
LineInterlace uses

22 C++ API Methods 261

scanline
interlacing, and

interlace- InterlaceType PlaneInterlace uses
TypeImage InterlaceType interlace_ plane interlacing.

PartitionInterlace
is like
PlaneInterlace
except the
different planes
are saved to
individual files
(e.g. image.R,
image.G, and
image.B). Use
LineInterlace or
PlaneInterlace to
create an interlaced
GIF or progressive
JPEG image.

Set image validity.
isValidImage bool bool isValid_ Valid images become

empty (inValid) if
argument is false.

const
labelImage std::string std::string Image label

&label_

Line width for
lineWidthImage double double drawing lines,

lineWidth_ circles, ellipses,
etc. See Drawable.

const
magickImage std::string std::string Get image format

&magick_ (e.g. "GIF")

True if the image
has transparency. If
set True, store

matteImage bool bool matteFlag_ matte channel if
the image has one
otherwise create an
opaque one.

matteColorImage Color const Color Image matte
&matteColor_ (transparent) color

monochrome- Transform the image
Image bool bool flag_ to black and white

Preferred size and
location of an image
canvas.

Use this option to
specify the
dimensions and
position of the
Postscript page in
dots per inch or a

pageImage Geometry const Geometry TEXT page in pixels.
&pageSize_

This option is
typically used in
concert with
density.

262 ImageMagick

Page may also be
used to position a
GIF image (such as
for a scene in an
animation)

Pen color to use
penColorImage Color const Color when annotating on

&penColor_
or drawing on image.

Texture image to
penTextureImage Image const Image & paint with (similar

penTexture_
to penColor).

unsigned int x_,
pixelColorImage Color unsigned int y_, Get/set pixel color

const Color at location x & y.
&color_

Postscript page
size. Use this
option to specify
the dimensions of
the Postscript page

psPageSizeImage Geometry const Geometry in dots per inch or
&pageSize_

a TEXT page in
pixels. This option
is typically used in
concert with
density.

JPEG/MIFF/PNG
qualityImage unsigned int (0 unsigned int compression level

to 100) quality_
(default 75).

Preferred number of
colors in the image.
The actual number of
colors in the image
may be less than

quantize- unsigned int your request, but
ColorsImage unsigned int colors_ never more. Images

with less unique
colors than
specified with this
option will have any
duplicate or unused
colors removed.

Colorspace to
quantize colors in
(default RGB).
Empirical evidence
suggests that
distances in color
spaces such as YUV

quantize- ColorspaceType or YIQ correspond to
ColorSpaceImage ColorspaceType colorSpace_ perceptual color

differences more
closely than do
distances in RGB
space. These color
spaces may give
better results when

22 C++ API Methods 263

color reducing an
image.

Apply
Floyd/Steinberg
error diffusion to
the image. The basic
strategy of
dithering is to
trade intensity
resolution for
spatial resolution
by averaging the
intensities of

quantize- several
DitherImage bool bool flag_ neighboring pixels.

Images which
suffer from
severe contouring
when reducing
colors can be
improved with this
option. The
quantizeColors or
monochrome option
must be set for this
option to take
effect.

Depth of the
quantization color
classification tree.
Values of 0 or 1
allow selection of

quantize- unsigned int (0 unsigned int the optimal tree
TreeDepthImage to 8) treeDepth_ depth for the color

reduction algorithm.
Values between 2 and
8 may be used to
manually adjust the
tree depth.

rendering- RenderingIntent The type of
IntentImage RenderingIntent render_ rendering intent

resolution- ResolutionType Units of image
UnitsImage ResolutionType units_ resolution

sceneImage unsigned int unsigned int Image scene number
scene_

Width and height of
a raw image (an
image which does not
support width and
height

sizeImage Geometry const Geometry information). Size
&geometry_ may also be used to

affect the image
size read from a
multi-resolution
format (e.g. Photo
CD, JBIG, or JPEG.

Color to use when
strokeColorImage Color const Color drawing object

&strokeColor_
outlines

264 ImageMagick

subImageImage unsigned int unsigned int Subimage of an image
subImage_ sequence

Number of images
subRangeImage unsigned int unsigned int relative to the base

subRange_
image

const
tileNameImage std::string std::string Tile name

&tileName_

typeImage ImageType ImageType type_ Image storage type.

Print detailed
verboseImage bool bool information about

verboseFlag_
the image

const
viewImage std::string std::string FlashPix viewing

&view_ parameters.

const X11 display to
x11DisplayImage std::string (e.g. std::string display to, obtain

"hostname:0.0") fonts from, or to
&display_

capture image from

Query Image Format Support

Magick++ provides the coderInfoList() function to support obtaining
information about the image formats supported by ImageMagick. Support for
image formats in ImageMagick is provided by modules known as "coders". A
user-provided container is updated based on a boolean truth-table match. The
truth-table supports matching based on whether ImageMagick can read the
format, write the format, or supports multiple frames for the format. A
wildcard specifier is supported for any "don’t care" field. The data
obtained via coderInfoList() may be useful for preparing GUI dialog boxes or
for deciding which output format to write based on support within the
ImageMagick build.

The definition of coderInfoList is:

class CoderInfo
{
public:

enum MatchType {
AnyMatch, // match any coder
TrueMatch, // match coder if true
FalseMatch // match coder if false

};

[remaining CoderInfo methods]

}

template <class Container >
void coderInfoList(Container *container_,

CoderInfo::MatchType isReadable_ =
CoderInfo::AnyMatch,

CoderInfo::MatchType isWritable_ =

22 C++ API Methods 265

CoderInfo::AnyMatch,
CoderInfo::MatchType isMultiFrame_ =

CoderInfo::AnyMatch
);

The following example shows how to retrieve a list of all of the coders
which support reading images and print the coder attributes (all listed
formats will be readable):

list<CoderInfo> coderList;
coderInfoList(&coderList, // Reference to output list

CoderInfo::TrueMatch, // Match readable formats
CoderInfo::AnyMatch, // Don’t care about writable formats
CoderInfo::AnyMatch); // Don’t care about multi-frame

support
list<CoderInfo>::iterator entry = coderList.begin();
while(entry != coderList.end())
{

cout << entry->name() << ": (" << entry->description() << ") : ";
cout << "Readable = ";
if (entry->isReadable())

cout << "true";
else

cout << "false";
cout << ", ";
cout << "Writable = ";
if (entry->isWritable())

cout << "true";
else

cout << "false";
cout << ", ";
cout << "Multiframe = ";
if (entry->isMultiframe())

cout << "true";
else

cout << "false";
cout << endl;

}

22.10 Magick::TypeMetric

The TypeMetric class provides the means to pass data from the Image class’s
TypeMetric method to the user. It provides information regarding font
metrics such as ascent, descent, text width, text height, and maximum
horizontal advance. The units of these font metrics are in pixels, and that
the metrics are dependent on the current Image font (default Ghostscript’s
"Helvetica"), pointsize (default 12 points), and x/y resolution (default 72
DPI) settings.

The pixel units may be converted to points (the standard
resolution-independent measure used by the typesetting industry) via the
following equation:

size_points = (size_pixels * 72)/resolution

where resolution is in dots-per-inch (DPI). This means that at the default
image resolution, there is one pixel per point.

Note that a font’s pointsize is only a first-order approximation of the font
height (ascender + descender) in points. The relationship between the
specified pointsize and the rendered font height is determined by the font
designer.

See FreeType Glyph Conventions for a detailed description of font metrics
related issues.

The methods available in the TypeMetric class are shown in the following
table:

TypeMetric Methods

Method Returns Units Signature Description

Returns the distance in
pixels from the text
baseline to the

ascent double Pixels void highest/upper grid
coordinate used to place
an outline point. Always a
positive value.

Returns the the distance
in pixels from the

descent double Pixels void baseline to the lowest
grid coordinate used to
place an outline point.
Always a negative value.

textWidth double Pixels void Returns text width in
pixels.

textHeight double Pixels void Returns text height in
pixels.

Returns the maximum
horizontal advance

maxHorizontalAdvance double Pixels void (advance from the
beginning of a character
to the beginning of the
next character) in pixels.

22.11 Special Format Characters

The Magick::Image methods annotate, draw, label, and the template function
montageImages support special format characters contained in the argument
text. These format characters work similar to C’s printf. Whenever a format
character appears in the text, it is replaced with the equivalent attribute
text. The available format characters are shown in the following table.

Format Characters

Format Description
%b file size
%c comment
%d directory
%e filename extension
%f filename
%g page geometry
%h height
%i input filename
%k number of unique colors
%l label
%m magick
%n number of scenes
%o output filename
%p page number
%q quantum depth
%s scene number
%t top of filename
%u unique temporary filename
%w width
%x x resolution
%y y resolution
%z image depth
%# signature
\n newline
\r carriage return

23 Perl API Methods

23.1 Image::Magick Attributes

An image has certain attributes associated with it such as width, height, number of colors in the colormap, page
geometry, and others. Many of the image methods allow you to set relevant attributes directly in the method call,
or you can use Set(), as in:

$image->Set(loop=>100);
$image->[$x]->Set(dither=>1);

To get an imageattribute, use Get():

($width, $height, $depth) = $image->Get(’width’, ’height’, ’depth’);
$colors = $image->[2]->Get(’colors’);

The methods GetAttribute() and SetAttribute() are aliases for Get() and Set() and may be used interchangeably.

Following is a list of image attributes acceptable to either Set() or Get() as noted.

adjoin join images into a single multi-image file.

$image->Set(adjoin=>boolean)
$image->Get(’adjoin’)

Certain file formats accept multiple images within a single file (e.g. a GIF animation). Ifadjoin is value other
than 0 and the image is a multi-image format, multiple reads to the same image object will join the images into a
single file when you call the Write() method. Setadjoin to 0 if you do not want the images output to a single
file.

antialias remove pixel aliasing.

$image->Set(antialias=>boolean)
$image->Get(’antialias’)

The visible effect of antialias is to blend the edges of any text or graphics with the image background. This attribute
affects how text and graphics are rendered when certain image formats are read (e.g. Postscript or SVG) or when
certain Image::Magick methods are called (e.g. Annotate() or Draw()).

268

23 Perl API Methods 269

background image background color.

$image->Set(background=>color-name)
$image->Get(’background’)

This attribute sets (or gets) the background color of an image. Image formats such as GIF, PICT, PNG, and WMF
retain the background color information.

base-filename base image filename (before transformations).

$image->Get(’base-filename”)

The original filename is returned as a string.

base-height base image height (before transformations).

$image->Get(’base-height’)

This attribute returns the original height of image before any resizing operation.

base-width base image width (before transformations).

$image->Get(’base-width’)

This attribute returns the original width of image before any resizing operation.

blue-primary chromaticity blue primary point.

$image->Set(blue-primary=>x-value,y-value)
$image->Get(’blue-primary’)

This attribute sets or returns the chromaticity blue primary point. This is a color management option.

cache-threshold cache threshold.

$image->Set(cache-threshold=>integer)
$image->Get(’cache-threshold’)

Image pixels are stored in your computer’s memory until it has been consumed or the cache threshold is exceeded.
Subsequent pixel operations are cached to disk. Operations to memory are significantly faster, but if your computer
does not have a sufficient amount of free memory to read or transform an image, you may need to set this threshold
to a small megabyte value (e.g. 32). Use 0 to cache all images to disk.

class image class.

$image->Get(’class’)

A Direct class image is a continuous tone image and is stored as a sequence of red-green-blue and optional
opacity intensity values. APseudo class image is an image with a colormap, where the image is stored as a map
of colors and a sequence of indexes into the map.

270 ImageMagick

clip-mask associate a clip mask with the image.

$image->Set(’clip-mask’=>image)
$image->Get(’clip-mask’)

Clip-mask associates a clip mask with the image.

colormap color of a particular colormap entry.

$image->Set(’colormap[$i]’=>color-name)
$image->Get(’colormap[$i]’)

This attribute returns the red, green, blue, and opacity values at colormap position$i. You can set the color with a
colorname (e.g. red) or color hex value (e.g. #ccbdbd).

colors number of distinct colors in the image.

$image->Get(’colors’)

This attribute returns the number of distinct colors in the image.

comment image comment.

$image->Get(’comment’)

Return the image comment.

compression type of compression.

$image->Set(compression=>string)
$image->Get(’compression’)

Compression defaults to the compression type of the image when it was first read. The value ofcompression
can be one of the following:

None BZip Fax
Group4 JPEG LosslessJPEG
LZW RLE Zip

If you set a compression type that is incompatible with the output file type, a compatible compression value is used
instead (e.g. a PNG image ignores acompression value of JPEG and saves with Zip compression).

delay interframe delay.

$image->Set(delay=>integer)
$image->Get(’delay’)

Delay regulates the playback speed of a sequence of images. The value is the number of hundredths of a second
that must pass before displaying the next image. The default is 0 which means there is no delay and the animation
will play as fast as possible.

23 Perl API Methods 271

density image resolution.

$image->Set(density=>geometry)
$image->Get(’density’)

This attribute to set the horizontal and vertical resolution of an image. Use attributeunits to define the units of
resolution. The default is 72 dots-per-inch.

depth color component depth.

$image->Get(’depth’)

Return the color component depth of the image, either 8 or 16. A depth of 8 represents color component values
from 0 to 255 while a depth of 16 represents values from 0 to 65535.

directory thumbnail names of an image montage.

$image->Get(’directory’)

A montage is one or more image thumbnails regularly spaced across a color or textured background created by the
Montage() method ormontageprogram.Directory returns the filenames associated with each thumbnail.

dispose GIF disposal method.

$image->Set(dispose=>0, 1, 2, 3)
$image->Get(’dispose’)

Thedispose attribute sets the GIF disposal method that defines how an image is refreshed when flipping between
scenes in a sequence. The disposal methods are defined as:

0 replace one full-size, non-transparent frame with another
1 any pixels not covered up by the next frame continue to display
2 background color or background tile shows through transparent pixels
3 restore to the state of a previous, undisposed frame

dither apply dithering to the image.

$image->Set(dither=>boolean)
$image->Get(’dither’)

Color reduction is performed implicitly when an image is converted from a file format that allows many colors to
one that allows fewer (e.g. JPEG to GIF). Dithering helps smooth out the apparent contours produced when sharply
reducing colors. The default is to dither an image during color reduction.

error mean error per pixel.

$image->Get(’error’)

This value reflects the mean error per pixel introduced when reducing the number of colors in an image either
implicitedly or explicitly:

1. Explicitly, when you use the Quantize() method.
2. Implicitly, when an image is converted from a file format that allows many colors to one that allows fewer

(e.g. JPEG to GIF).

The mean error gives one measure of how well the color reduction algorithm performed and how similiar the color
reduced image is to the original.

272 ImageMagick

file Perl filehandle.

$image->Set(file=>filehandle)
$image->Get(’file’)

The Read() and Write() methods accept an already opened Perl filehandle and the image is read or written directly
from or to the specified filehandle.

filename filename of image.

$image->Set(filename=>string)
$image->Get(’filename’)

The default filename is the name of the file from which the image was read. Write() accepts a filename as a
parameter, however, if you do not specify one, it uses the name defined by thefilename attribute. For example:

$image->Read(’logo.gif’);
$image->Write(); # write image as logo.gif
$image->Set(filename=>’logo.png’);
$image->Write(); # write image as logo.png

filesize size of file in bytes.

$image->Get(’filesize’)

Returns the number of bytes the image consumes in memory or on disk.

font text font.

$image->Set(font=>string)
$image->Get(’font’)

Both Annotate() and Draw() require a font to render text to an image. A font can be Truetype (Arial.ttf), Postscript
(Helvetica), or a fully-qualified X11 font (-*-helvetica-medium-r-*-*-12-*-*-*-*-*-iso8859-*) name.

format descriptive image format.

$image->Get(’format’)

Attribute magick returns the abbreviated image format (e.g. JPEG) whileformat returns more descriptive text
about the format (e.g. Joint Photographic Experts Group JFIF format).

fuzz close colors are treated as equal.

$image->Set(fuzz=>integer)
$image->Get(’fuzz’)

A number of image methods (e.g. ColorFloodfill()) compare a target color to a color within the image. By default
these colors must match exactly. However, in many cases two colors may differ by a small amount.Fuzz defines
how much tolerance is acceptable to consider two different colors as the same. For example, setfuzz to 10 and
the color red at intensities of 100 and 102 respectively are now interpreted as the same color.

23 Perl API Methods 273

gamma image gamma.

$image->Set(gamma=>float)
$image->Get(’gamma’)

Set or return the image gamma value. Unlike Gamma() that actually applies the gamma value to the image pixels,
here we just set the value. This is useful if the correct gamma is already known about a particular image.

geometry shortcut for specifying width and height.

$image->Set(geometry=>geometry)
$image->Get(’geometry’)

Thegeometry attribute is a convenient way to specify the width, height, and any offset of an image region as a
single string. For example,

geometry=>’640x80’

is equivalent to:

width=>640, height=>480

To refer to a 20 x 20 region of pixels starting at coordinate (100, 150), use:

geometry=>’20x20+100+150’

gravity type of gravity.

$image->Set(gravity=>string)
$image->Get(’gravity’)

Gravity defaults to NorthWest. The value ofgravity can be one of the following:

NorthWest North NorthEast
West Center East
SouthWest South SouthEast

green-primary chromaticity green primary point.

$image->Set(green-primary=>x-value,y-value)
$image->Get(’green-primary’)

This attribute sets or returns the chromaticity green primary point. This is a color management option.

height image height.

$image->Get(’height’)

This attribute returns the height (in pixel rows) of the image.

274 ImageMagick

index colormap index at a particular pixel location.

$image->Set(’index[$x, $y]’=>color-name)
$image->Get(’index[$x, $y]’)

This attribute sets or returns the colormap index at position ($x, $y). The result is undefined if the image does not
have a colormap or the specified location lies outside the the image area.

ICM color information profile.

$image->Get(’ICM’)

This attribute returns the color information profile.

id ImageMagick registry ID.

$image->Get(’id’)

This attribute returns the ImageMagick registry ID. The registry allows for persistent images that can later be
referenced as a filename (e.g.registry:0xbd).

interlace type of interlacing scheme.

$image->Set(interlace=>string)
$image->Get(’interlace’)

The interlace attribute allows you to specify the interlacing scheme used by certain image formats such as
GIF, JPEG, RGB, and CMYK. The default isNone but can be any of the following:

None no interlacing
Line scanline interlacing
Plane plane interlacing
Partition partition interlacing

IPTC newswire information profile.

$image->Get(’IPTC’)

This attribute returns the newswire information profile.

label image label.

$image->Set(label=>string)
$image->Get(’label’)

Use labels to optionally annotate a Postscript or PDF image or the thumbnail images of a montage created by the
Montage() method ormontageprogram. A label can include any of the special formatting characters described in
the Comment() method description.

23 Perl API Methods 275

loop add loop extension to your image sequence.

$image->Set(loop=>integer)
$image->Get(’loop’)

The loop attribute adds the Netscape looping extension to an image sequence. A value of 0 causes the animation
sequence to loop continuously. Any other value results in the animation being repeated for the specified number of
times. The default value is 1.

magick image file format.

$image->Set(magick=>string)
$image->Get(’magick’)

The default image format is whatever format the image was in when it was read. Write() accepts an image format as
a parameter, however, if you do not specify one, it uses the format defined by themagick attribute. For example:

$image->Read(’logo.gif’);
$image->Write(); # write image as GIF
$image->Set(magick=>’PNG’);
$image->Write(); # write image as PNG

matte transparency boolean.

$image->Set(matte=>boolean)
$image->Get(’matte’)

Some images have a transparency mask associated with each pixel ranging from opaque (pixel obscures back-
ground) to fully transparent (background shows thru). The transparency mask, if it exists, is ignored if thematte
attribute is 0 and all pixels are treated as opaque.

maximum-error normalized maximum mean error per pixel.

$image->Get(’maximum-error’)

This value reflects the normalized maximum per pixel introduced when reducing the number of colors in an image
either implicitedly or explicitly:

1. Explicitly, when you use the Quantize() method.
2. Implicitly, when an image is converted from a file format that allows many colors to one that allows fewer

(e.g. JPEG to GIF).

The normalized maximum error gives one measure of how well the color reduction algorithm performed and how
similiar the color reduced image is to the original.

mean-error normalized mean mean error per pixel.

$image->Get(’mean-error’)

This value reflects the normalized mean per pixel introduced when reducing the number of colors in an image
either implicitedly or explicitly:

1. Explicitly, when you use the Quantize() method.
2. Implicitly, when an image is converted from a file format that allows many colors to one that allows fewer

(e.g. JPEG to GIF).

The normalized mean error gives one measure of how well the color reduction algorithm performed and how
similiar the color reduced image is to the original.

276 ImageMagick

montage tile size and offset within an image montage.

$image->Get(’montage’)

A montage is one or more image thumbnails regularly spaced across a color or textured background returned by
the Montage() method ormontageprogram. Themontage attribute returns the geometry of the region associated
with each image thumbnail (e.g. 160x120+10+10). This information is useful for creating image maps for dynamic
web pages.

page perferred size and location of the image canvas.

$image->Set(page=>string)
$image->Get(’page’)

Page declares the image canvas size and location. Typically this is only useful for the Postscript, text, and GIF
formats. The value ofstring can be:

Letter Tabloid Ledger
Legal Statement Executive
A3 A4 A5
B4 B5 Folio
Quarto 10x14

or a geometry (612x792). The default value isLetter .

pointsize pointsize of a font.

$image->Set(pointsize=>integer)
$image->Get(’pointsize’)

The pointsize attribute determines how large to draw a Postscript or TrueType font with the Annotate() or
Draw() methods. The default is 12.

preview type of image preview.

$image->Set(preview=>string)
$image->Get(’preview’)

Set or get the type of preview for the Preview image format.

Rotate Shear Roll
Hue Saturation Brightness
Gamma Spiff Dull
Grayscale Quantize
Despeckle ReduceNoise
AddNoise Sharpen Blur
Threshold EdgeDetect
Spread Solarize Shade
Raise Segment Swirl
Implode Wave OilPaint
CharcoalDrawing JPEG

Suppose we want to determine an ideal gamma setting for our image:

$image->Write(filename=>’model.png’,preview=>’Gamma’);
$image->Display();

23 Perl API Methods 277

quality compression level.

$image->Set(quality=>integer)
$image->Get(’quality’)

The quality attribute sets the JPEG, MIFF, MNG, or PNG compression level. The range is 0 (worst) to 100 (best).
The default is 75.

Quality is a trade-off between image size and compression speed for the MIFF, MNG, and PNG formats. The higher
the quality, the smaller the resulting image size but with a requisite increase in compute time. The quality value is
used as two decimal digits. The “tens” digit conveys the zlib compression level and the “ones” digit conveys the
PNG filter method. When the compression level is 0, the Huffman compression strategy is used, which is fast but
does not necessarily obtain the worst compression. The MIFF encoder ignores the PNG filter method conveyed by
the “ones” digit.

The JPEG trade-off is between image size and image appearance. A high quality returns an image nearly free of
compression artifacts but with a larger image size. If you can accept a lower quality image appearance, the resulting
image size would be considerably less.

red-primary chromaticity red primary point.

$image->Set(red-primary=>x-value,y-value)
$image->Get(’red-primary’)

This attribute sets or returns the chomaticity red primary point. This is a color management option.

rendering-intent intended rendering model.

$image->Set(rendering-intent=>string)
$image->Get(’rendering-intent’)

This is a color management option. Choose from these models:

Undefined Saturation Perceptual
Absolute Relative

sampling-factor image sampling factor.

$image->Set(’sampling-factor’=>geometry)
$image->Get(’sampling-factor’)

Use this attribute to set the horizontal and vertical sampling factor for use by the JPEG encoder.

scene image scene number.

$image->Set(scene=>integer)
$image->Get(’scene’)

By default each image in a sequence has a scene number that starts at 0 and each subsequent image in the sequence
increments by 1. Usescene to reset this value to whatever is appropriate for your needs.

278 ImageMagick

signature SHA-256 message digest.

$image->Get(’signature’)

Retrieves the SHA-256 message digest associated with the image. A signature is generated across all the image
pixels. If a single pixel changes, the signature will change as well. The signature is mostly useful for quickly
determining if two images are identical or if an image has been modified.

size width and height of a raw image.

$image->Set(size=>geometry)
$image->Get(’size’)

Set thesize attribute before reading an image from a raw data file format such as RGB, GRAY, TEXT, or CMYK
(e.g. 640x480) or identify a desired resolution for Photo CD images (e.g. 768x512).

$image->Set(size=>’640x480’);
$image->Read(’gray:protein’);

server X server to contact.

$image->Set(server=>string)
$image->Get(’server’)

Display(), Animate(), or any X11 font use with Annotate() require contact with an X server. Useserver to
specify which X server to contact (e.g.mysever:0).

taint pixel change boolean.

$image->Get(’taint’)

Taint returns a value other than 0 if any image pixel has modified since it was first read.

texture name of texture to tile.

$image->Set(texture=>string)
$image->Get(’texture’)

The texture attribute assigns a filename of a texture to be tiled onto the image background when any TXT or
WMF image formats are read.

type image type.

$image->Set(type=>string)
$image->Get(’type’)

The image type can be any of the following

23 Perl API Methods 279

Bilevel Grayscale GrayscaleMatte
Palette PaletteMatte TrueColor
TrueColorMatte ColorSeparation ColorSeparationMatte
Optimize

When getting this attribute, the value reflects the type of image pixels. For example a colormapped GIF image
would most likely return Palette as the image type. You can also force a particular type with Set(). For example if
you want to force your color image to black and white, use:

$image->Set(type=>’Bilevel’);

units units of resolution.

$image->Set(units=>string)
$image->Get(’units’)

Return or set the units in which the image’s resolution are defined. Values may be:

Undefined
pixels/inch
pixels/centimeter

verbose print details.

$image->Set(verbose=>boolean)

When set,verbose causes some image operations to print details about the operation as it progresses.

white-point chromaticity white point.

$image->Set(white-point=>x-value,y-value)
$image->Get(’white-point’)

This attribute sets or returns the chomaticity white point. This is a color management option.

width image width.

$image->Get(’width’)

Returns the width (integer number of pixel columns) of the image.

x-resolution horizontal resolution.

$image->Get(’x-resolution’)

Returns thex resolution of the image in the units defined by theunits attribute (e.g. 72 pixels/inch). Use the
density attribute to change this value.

	Preface
	Part 1: Quick Start Guide
	Introduction
	
	What is ImageMagick
	Getting Help

	Image Primer
	
	What is an Image
	Image Depth
	Colormapped Images
	Compression
	Colorspace
	Meta-Information
	Image Formats

	Image Tools
	
	Image Transformations
	
	How to specify an image
	Convert from one Image Format to Another
	Colormap Manipulation
	Resize an Image
	Crop
	Enhance
	Effects
	Decorate
	Annotate
	Draw
	Composite
	Meta-Information
	Miscellanious Transforms

	Advanced ImageMagick Features
	
	Working with Multi-resolution Images
	Working with an Image Sequence
	Working with a Group of Images
	Working with Raw Images
	Using ImageMagick from a Web Browser

	Part 2: Application Programming Interface
	C Application Programming Interface
	
	Working with Blobs
	Working with Threads

	C++ Application Programming Interface
	
	Working with Blobs
	Working with Threads

	Perl Application Programming Interface
	
	Background

	PHP Application Programming Interface
	
	Background

	Other Application Programming Interfaces
	
	Java
	Python
	ImageMagick Integration Project

	Part 3: User's Guide
	Image Channels
	
	Working with Image Channels

	Image Painting
	
	Image Painting

	Color Profiles
	
	Working with Color Profiles

	Image Drawing
	
	SVG
	MVG

	Part 4: Installation And Administration Guide
	Installing from Binary
	
	Downloading
	Linux RPM
	Windows
	VMS
	Unix
	Other

	Installing from Source
	
	Downloading
	Unix
	Windows
	Macintosh
	VMS

	Customizing ImageMagick
	
	Image Depth
	Image Cache
	Delegates
	magic.mgk
	type.mgk

	Part 5: Reference Manual
	Supported Image Formats
	
	Commandline Options
	
	API Structures and Enumerations
	
	API Structures
	API Enumerations

